forked from onnx/onnx-tensorrt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathweightUtils.cpp
168 lines (151 loc) · 5.51 KB
/
weightUtils.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
/*
* SPDX-License-Identifier: Apache-2.0
*/
#include "weightUtils.hpp"
#include "bfloat16.hpp"
#include "half.h"
#include <cstring> // For std::memcpy
#include <iostream>
#include <limits>
#include <numeric>
#include <sstream>
#include <typeindex>
#include <unordered_map>
#include <iterator>
namespace onnx2trt
{
char const* getDtypeName(int32_t onnxDtype)
{
switch (onnxDtype)
{
case ::ONNX_NAMESPACE::TensorProto::FLOAT: return "FLOAT";
case ::ONNX_NAMESPACE::TensorProto::UINT8: return "UINT8";
case ::ONNX_NAMESPACE::TensorProto::INT8: return "INT8";
case ::ONNX_NAMESPACE::TensorProto::UINT16: return "UINT16";
case ::ONNX_NAMESPACE::TensorProto::INT16: return "INT16";
case ::ONNX_NAMESPACE::TensorProto::INT32: return "INT32";
case ::ONNX_NAMESPACE::TensorProto::INT64: return "INT64";
case ::ONNX_NAMESPACE::TensorProto::STRING: return "STRING";
case ::ONNX_NAMESPACE::TensorProto::BOOL: return "BOOL";
case ::ONNX_NAMESPACE::TensorProto::FLOAT16: return "FLOAT16";
case ::ONNX_NAMESPACE::TensorProto::BFLOAT16: return "BFLOAT16";
case ::ONNX_NAMESPACE::TensorProto::DOUBLE: return "DOUBLE";
case ::ONNX_NAMESPACE::TensorProto::UINT32: return "UINT32";
case ::ONNX_NAMESPACE::TensorProto::UINT64: return "UINT64";
case ::ONNX_NAMESPACE::TensorProto::COMPLEX64: return "COMPLEX64";
case ::ONNX_NAMESPACE::TensorProto::COMPLEX128: return "COMPLEX128";
default: return "<UNKNOWN>";
}
}
int32_t getDtypeSizeBits(int32_t onnxDtype)
{
switch (onnxDtype)
{
case ::ONNX_NAMESPACE::TensorProto::FLOAT16: return 16;
case ::ONNX_NAMESPACE::TensorProto::BFLOAT16: return 16;
case ::ONNX_NAMESPACE::TensorProto::FLOAT: return 32;
case ::ONNX_NAMESPACE::TensorProto::DOUBLE: return 64;
case ::ONNX_NAMESPACE::TensorProto::COMPLEX64: return 64;
case ::ONNX_NAMESPACE::TensorProto::COMPLEX128: return 128;
case ::ONNX_NAMESPACE::TensorProto::UINT8: return 8;
case ::ONNX_NAMESPACE::TensorProto::INT8: return 8;
case ::ONNX_NAMESPACE::TensorProto::UINT16: return 16;
case ::ONNX_NAMESPACE::TensorProto::INT16: return 16;
case ::ONNX_NAMESPACE::TensorProto::UINT32: return 32;
// Booleans are stored in int32 tensors in ONNX
case ::ONNX_NAMESPACE::TensorProto::BOOL: return 8;
case ::ONNX_NAMESPACE::TensorProto::INT32: return 32;
case ::ONNX_NAMESPACE::TensorProto::UINT64: return 64;
case ::ONNX_NAMESPACE::TensorProto::INT64: return 64;
case ::ONNX_NAMESPACE::TensorProto::FLOAT8E4M3FN: return 8;
case ::ONNX_NAMESPACE::TensorProto::INT4: return 4;
default: return -1;
}
}
size_t getTensorOrWeightsSizeBytes(int64_t count, int32_t onnxDtype)
{
int32_t dTypeSize = getDtypeSizeBits(onnxDtype);
if (dTypeSize == -1 || static_cast<size_t>(count) > std::numeric_limits<size_t>::max() / static_cast<size_t>(dTypeSize))
{
throw std::runtime_error("Size of weights exceeds maximum!");
}
int64_t sizeInBits = count * dTypeSize;
if (sizeInBits % 8 != 0)
{
// This is a specific implementation to INT4, since this is currently the only sub-byte data type
// we're supporting. Different data-types may have different padding.
assert(onnxDtype == ::ONNX_NAMESPACE::TensorProto::INT4);
sizeInBits += 4;
}
assert(sizeInBits % 8 == 0);
return static_cast<size_t>(sizeInBits / 8);
}
int64_t volume(nvinfer1::Dims const& dims)
{
std::for_each(
dims.d, dims.d + dims.nbDims, [](int32_t d) { assert(d >= 0 && "volume makes no sense for dynamic shapes"); });
return std::accumulate(dims.d, dims.d + dims.nbDims, int64_t{1}, std::multiplies<int64_t>{});
}
std::string normalizePath(std::string const& path)
{
std::vector<std::string> normPath;
auto addToPath = [&normPath](std::string s) {
// Ignore all extra slashes, and current directory paths
if (s == "/" || s == "./")
{
return;
}
// Push back to normPath under the following circumstances
// 1. Current string is not "../" or
// 2. "../" if it's the first string or
// 3. "../" is the previous string in normPath
if (s != "../" || normPath.empty() || (!normPath.empty() && normPath.back() == "../"))
{
normPath.push_back(s);
}
// Remove previous entry since "../" was encountered.
else
{
normPath.pop_back();
}
};
size_t i = 0;
size_t n = path.size();
std::string sep = "/";
// Loop through path, split on all path seperator tokens, and append to normPath if applicable.
while (i < n)
{
auto slashPos = path.find(sep, i);
if (slashPos == std::string::npos)
{
addToPath(path.substr(i, n - i));
break;
}
else
{
addToPath(path.substr(i, slashPos - i + 1));
i = slashPos + 1;
}
}
// Build final output string
std::string out;
for (auto s : normPath)
{
out += s;
}
return out;
}
std::string const& generateUniqueName(
std::set<std::string>& namesSet, int64_t& suffixCounter, std::string const& basename)
{
std::string candidate = basename;
while (namesSet.find(candidate) != namesSet.end())
{
candidate = basename + "_" + std::to_string(suffixCounter);
++suffixCounter;
}
namesSet.insert(candidate);
// Return reference to newly inserted string to avoid any c_str()'s going out of scope
return *namesSet.find(candidate);
}
} // namespace onnx2trt