forked from mjl/particle_filter_demo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparticle_filter.py
265 lines (215 loc) · 8.07 KB
/
particle_filter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
# ------------------------------------------------------------------------
# coding=utf-8
# ------------------------------------------------------------------------
#
# Created by Martin J. Laubach on 2011-11-15
#
# ------------------------------------------------------------------------
from __future__ import absolute_import
import random
import math
import bisect
from draw import Maze
"""
# Smaller maze
maze_data = ( ( 2, 0, 1, 0, 0 ),
( 0, 0, 0, 0, 1 ),
( 1, 1, 1, 0, 0 ),
( 1, 0, 0, 0, 0 ),
( 0, 0, 2, 0, 1 ))
"""
# 0 - empty square
# 1 - occupied square
# 2 - occupied square with a beacon at each corner, detectable by the robot
maze_data = ( ( 1, 1, 0, 0, 2, 0, 0, 0, 0, 1 ),
( 1, 2, 0, 0, 1, 1, 0, 0, 0, 0 ),
( 0, 1, 1, 0, 0, 0, 0, 1, 0, 1 ),
( 0, 0, 0, 0, 1, 0, 0, 1, 1, 2 ),
( 1, 1, 0, 1, 1, 2, 0, 0, 1, 0 ),
( 1, 1, 1, 0, 1, 1, 1, 0, 2, 0 ),
( 2, 0, 0, 0, 0, 0, 0, 0, 0, 0 ),
( 1, 2, 0, 1, 1, 1, 1, 0, 0, 0 ),
( 0, 0, 0, 0, 1, 0, 0, 0, 1, 0 ),
( 0, 0, 1, 0, 0, 2, 1, 1, 1, 0 ))
PARTICLE_COUNT = 2000 # Total number of particles
ROBOT_HAS_COMPASS = True # Does the robot know where north is? If so, it
# makes orientation a lot easier since it knows which direction it is facing.
# If not -- and that is really fascinating -- the particle filter can work
# out its heading too, it just takes more particles and more time. Try this
# with 3000+ particles, it obviously needs lots more hypotheses as a particle
# now has to correctly match not only the position but also the heading.
# ------------------------------------------------------------------------
# Some utility functions
def add_noise(level, *coords):
return [x + random.uniform(-level, level) for x in coords]
def add_little_noise(*coords):
return add_noise(0.02, *coords)
def add_some_noise(*coords):
return add_noise(0.1, *coords)
# This is just a gaussian kernel I pulled out of my hat, to transform
# values near to robbie's measurement => 1, further away => 0
sigma2 = 0.9 ** 2
def w_gauss(a, b):
error = a - b
g = math.e ** -(error ** 2 / (2 * sigma2))
return g
# ------------------------------------------------------------------------
def compute_mean_point(particles):
"""
Compute the mean for all particles that have a reasonably good weight.
This is not part of the particle filter algorithm but rather an
addition to show the "best belief" for current position.
"""
m_x, m_y, m_count = 0, 0, 0
for p in particles:
m_count += p.w
m_x += p.x * p.w
m_y += p.y * p.w
if m_count == 0:
return -1, -1, False
m_x /= m_count
m_y /= m_count
# Now compute how good that mean is -- check how many particles
# actually are in the immediate vicinity
m_count = 0
for p in particles:
if world.distance(p.x, p.y, m_x, m_y) < 1:
m_count += 1
return m_x, m_y, m_count > PARTICLE_COUNT * 0.95
# ------------------------------------------------------------------------
class WeightedDistribution(object):
def __init__(self, state):
accum = 0.0
self.state = [p for p in state if p.w > 0]
self.distribution = []
for x in self.state:
accum += x.w
self.distribution.append(accum)
def pick(self):
try:
return self.state[bisect.bisect_left(self.distribution, random.uniform(0, 1))]
except IndexError:
# Happens when all particles are improbable w=0
return None
# ------------------------------------------------------------------------
class Particle(object):
def __init__(self, x, y, heading=None, w=1, noisy=False):
if heading is None:
heading = random.uniform(0, 360)
if noisy:
x, y, heading = add_some_noise(x, y, heading)
self.x = x
self.y = y
self.h = heading
self.w = w
def __repr__(self):
return "(%f, %f, w=%f)" % (self.x, self.y, self.w)
@property
def xy(self):
return self.x, self.y
@property
def xyh(self):
return self.x, self.y, self.h
@classmethod
def create_random(cls, count, maze):
return [cls(*maze.random_free_place()) for _ in range(0, count)]
def read_sensor(self, maze):
"""
Find distance to nearest beacon.
"""
return maze.distance_to_nearest_beacon(*self.xy)
def advance_by(self, speed, checker=None, noisy=False):
h = self.h
if noisy:
speed, h = add_little_noise(speed, h)
h += random.uniform(-3, 3) # needs more noise to disperse better
r = math.radians(h)
dx = math.sin(r) * speed
dy = math.cos(r) * speed
if checker is None or checker(self, dx, dy):
self.move_by(dx, dy)
return True
return False
def move_by(self, x, y):
self.x += x
self.y += y
# ------------------------------------------------------------------------
class Robot(Particle):
speed = 0.2
def __init__(self, maze):
super(Robot, self).__init__(*maze.random_free_place(), heading=90)
self.chose_random_direction()
self.step_count = 0
def chose_random_direction(self):
heading = random.uniform(0, 360)
self.h = heading
def read_sensor(self, maze):
"""
Poor robot, it's sensors are noisy and pretty strange,
it only can measure the distance to the nearest beacon(!)
and is not very accurate at that too!
"""
return add_little_noise(super(Robot, self).read_sensor(maze))[0]
def move(self, maze):
"""
Move the robot. Note that the movement is stochastic too.
"""
while True:
self.step_count += 1
if self.advance_by(self.speed, noisy=True,
checker=lambda r, dx, dy: maze.is_free(r.x+dx, r.y+dy)):
break
# Bumped into something or too long in same direction,
# chose random new direction
self.chose_random_direction()
# ------------------------------------------------------------------------
world = Maze(maze_data)
world.draw()
# initial distribution assigns each particle an equal probability
particles = Particle.create_random(PARTICLE_COUNT, world)
robbie = Robot(world)
while True:
# Read robbie's sensor
r_d = robbie.read_sensor(world)
# Update particle weight according to how good every particle matches
# robbie's sensor reading
for p in particles:
if world.is_free(*p.xy):
p_d = p.read_sensor(world)
p.w = w_gauss(r_d, p_d)
else:
p.w = 0
# ---------- Try to find current best estimate for display ----------
m_x, m_y, m_confident = compute_mean_point(particles)
# ---------- Show current state ----------
world.show_particles(particles)
world.show_mean(m_x, m_y, m_confident)
world.show_robot(robbie)
# ---------- Shuffle particles ----------
new_particles = []
# Normalise weights
nu = sum(p.w for p in particles)
if nu:
for p in particles:
p.w = p.w / nu
# create a weighted distribution, for fast picking
dist = WeightedDistribution(particles)
for _ in particles:
p = dist.pick()
if p is None: # No pick b/c all totally improbable
new_particle = Particle.create_random(1, world)[0]
else:
new_particle = Particle(p.x, p.y,
heading=robbie.h if ROBOT_HAS_COMPASS else p.h,
noisy=True)
new_particles.append(new_particle)
particles = new_particles
# ---------- Move things ----------
old_heading = robbie.h
robbie.move(world)
d_h = robbie.h - old_heading
# Move particles according to my belief of movement (this may
# be different than the real movement, but it's all I got)
for p in particles:
p.h += d_h # in case robot changed heading, swirl particle heading too
p.advance_by(robbie.speed)