Skip to content

Latest commit

 

History

History
146 lines (90 loc) · 9.21 KB

File metadata and controls

146 lines (90 loc) · 9.21 KB

DPN 系列


目录

1. 模型介绍

1.1 模型简介

DPN 的全称是 Dual Path Networks,即双通道网络。该网络是由 DenseNet 和 ResNeXt 结合的一个网络,其证明了 DenseNet 能从靠前的层级中提取到新的特征,而 ResNeXt 本质上是对之前层级中已提取特征的复用。作者进一步分析发现,ResNeXt 对特征有高复用率,但冗余度低,DenseNet 能创造新特征,但冗余度高。结合二者结构的优势,作者设计了 DPN 网络。最终 DPN 网络在同样 FLOPs 和参数量下,取得了比 ResNeXt 与 DenseNet 更好的结果。

该系列模型的 FLOPs、参数量以及 T4 GPU 上的预测耗时如下图所示。

目前 PaddleClas 开源的 DenseNet 与 DPN 模型的预训练模型一共有 10 个,其指标如上图所示,可以看到,在相同的 FLOPs 和参数量下,相比 DenseNet,DPN 拥有更高的精度。但是由于 DPN 有更多的分支,所以其推理速度要慢于 DenseNet。由于 DenseNet264 的网络层数最深,所以该网络是 DenseNet 系列模型中参数量最大的网络,DenseNet161 的网络的宽度最大,导致其是该系列中网络中计算量最大、精度最高的网络。从推理速度来看,计算量大且精度高的的 DenseNet161 比 DenseNet264 具有更快的速度,所以其比 DenseNet264 具有更大的优势。

对于 DPN 系列网络,模型的 FLOPs 和参数量越大,模型的精度越高。其中,由于 DPN107 的网络宽度最大,所以其是该系列网络中参数量与计算量最大的网络。

1.2 模型指标

Models Top1 Top5 Reference
top1
Reference
top5
FLOPs
(G)
Params
(M)
DPN68 0.768 0.934 0.764 0.931 4.030 10.780
DPN92 0.799 0.948 0.793 0.946 12.540 36.290
DPN98 0.806 0.951 0.799 0.949 22.220 58.460
DPN107 0.809 0.953 0.802 0.951 35.060 82.970
DPN131 0.807 0.951 0.801 0.949 30.510 75.360

1.3 Benchmark

1.3.1 基于 V100 GPU 的预测速度

Models Crop Size Resize Short Size FP32
Batch Size=1
(ms)
FP32
Batch Size=4
(ms)
FP32
Batch Size=8
(ms)
DPN68 224 256 8.18 11.40 14.82
DPN92 224 256 12.48 20.04 25.10
DPN98 224 256 14.70 25.55 35.12
DPN107 224 256 19.46 35.62 50.22
DPN131 224 256 19.64 34.60 47.42

备注: 精度类型为 FP32,推理过程使用 TensorRT。

1.3.2 基于 T4 GPU 的预测速度

| Models | Size | Latency(ms)
FP32
bs=1 | Latency(ms)
FP32
bs=4 | Latency(ms)
FP32
bs=8 | |-------------|-----------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------| | DPN68 | 224 | 11.7827 | 13.12652 | 16.19213 | 11.64915 | 12.82807 | 18.57113 | | DPN92 | 224 | 18.56026 | 20.35983 | 29.89544 | 18.15746 | 23.87545 | 38.68821 | | DPN98 | 224 | 21.70508 | 24.7755 | 40.93595 | 21.18196 | 33.23925 | 62.77751 | | DPN107 | 224 | 27.84462 | 34.83217 | 60.67903 | 27.62046 | 52.65353 | 100.11721 | | DPN131 | 224 | 28.58941 | 33.01078 | 55.65146 | 28.33119 | 46.19439 | 89.24904 |

备注: 推理过程使用 TensorRT。

2. 模型快速体验

安装 paddlepaddle 和 paddleclas 即可快速对图片进行预测,体验方法可以参考ResNet50 模型快速体验

3. 模型训练、评估和预测

此部分内容包括训练环境配置、ImageNet数据的准备、该模型在 ImageNet 上的训练、评估、预测等内容。在 ppcls/configs/ImageNet/DPN/ 中提供了该模型的训练配置,启动训练方法可以参考:ResNet50 模型训练、评估和预测

4. 模型推理部署

4.1 推理模型准备

Paddle Inference 是飞桨的原生推理库, 作用于服务器端和云端,提供高性能的推理能力。相比于直接基于预训练模型进行预测,Paddle Inference可使用 MKLDNN、CUDNN、TensorRT 进行预测加速,从而实现更优的推理性能。更多关于Paddle Inference推理引擎的介绍,可以参考Paddle Inference官网教程

Inference 的获取可以参考 ResNet50 推理模型准备

4.2 基于 Python 预测引擎推理

PaddleClas 提供了基于 python 预测引擎推理的示例。您可以参考ResNet50 基于 Python 预测引擎推理 完成模型的推理预测。

4.3 基于 C++ 预测引擎推理

PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考服务器端 C++ 预测来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考基于 Visual Studio 2019 Community CMake 编译指南完成相应的预测库编译和模型预测工作。

4.4 服务化部署

Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考Paddle Serving 代码仓库

PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考模型服务化部署来完成相应的部署工作。

4.5 端侧部署

Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考Paddle Lite 代码仓库

PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考端侧部署来完成相应的部署工作。

4.6 Paddle2ONNX 模型转换与预测

Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考Paddle2ONNX 代码仓库

PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考Paddle2ONNX 模型转换与预测来完成相应的部署工作。