ReXNet 是 NAVER 集团 ClovaAI 研发中心基于一种网络架构设计新范式而构建的网络。针对现有网络中存在的 Representational Bottleneck
问题,作者提出了一组新的设计原则。作者认为传统的网络架构设计范式会产生表达瓶颈,进而影响模型的性能。为研究此问题,作者研究了上万个随机网络生成特征的 matric rank
,同时进一步研究了网络层中通道配置方案。基于此,作者提出了一组简单而有效的设计原则,以消除表达瓶颈问题。论文地址
| Models | Top1 | Top5 | Reference
top1 | Reference
top5 | FLOPs
(G) | Params
(M) |
|:--:|:--:|:--:|:--:|:--:|----|
| ReXNet_1_0 | 77.46 | 93.70 | 77.9 | - | 0.415 | 4.838 |
| ReXNet_1_3 | 79.13 | 94.64 | 79.5 | - | 0.683 | 7.611 |
| ReXNet_1_5 | 80.06 | 95.12 | 80.3 | - | 0.900 | 9.791 |
| ReXNet_2_0 | 81.22 | 95.36 | 81.6 | - | 1.561 | 16.449 |
| ReXNet_3_0 | 82.09 | 96.12 | 82.8 | - | 3.445 | 34.833 |
备注: PaddleClas 所提供的该系列模型的预训练模型权重,均是基于其官方提供的权重转得。
Models | Size | Latency(ms) bs=1 |
Latency(ms) bs=4 |
Latency(ms) bs=8 |
---|---|---|---|---|
ReXNet_1_0 | 224 | 3.08 | 4.15 | 5.49 |
ReXNet_1_3 | 224 | 3.54 | 4.87 | 6.54 |
ReXNet_1_5 | 224 | 3.68 | 5.31 | 7.38 |
ReXNet_2_0 | 224 | 4.30 | 6.54 | 9.19 |
ReXNet_3_0 | 224 | 5.74 | 9.49 | 13.62 |
备注: 精度类型为 FP32,推理过程使用 TensorRT。
安装 paddlepaddle 和 paddleclas 即可快速对图片进行预测,体验方法可以参考ResNet50 模型快速体验。
此部分内容包括训练环境配置、ImageNet数据的准备、该模型在 ImageNet 上的训练、评估、预测等内容。在 ppcls/configs/ImageNet/ReXNet/
中提供了该模型的训练配置,启动训练方法可以参考:ResNet50 模型训练、评估和预测。
Paddle Inference 是飞桨的原生推理库, 作用于服务器端和云端,提供高性能的推理能力。相比于直接基于预训练模型进行预测,Paddle Inference可使用 MKLDNN、CUDNN、TensorRT 进行预测加速,从而实现更优的推理性能。更多关于Paddle Inference推理引擎的介绍,可以参考Paddle Inference官网教程。
Inference 的获取可以参考 ResNet50 推理模型准备 。
PaddleClas 提供了基于 python 预测引擎推理的示例。您可以参考ResNet50 基于 Python 预测引擎推理 。
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考服务器端 C++ 预测来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考基于 Visual Studio 2019 Community CMake 编译指南完成相应的预测库编译和模型预测工作。
Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考Paddle Serving 代码仓库。
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考模型服务化部署来完成相应的部署工作。
Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考Paddle Lite 代码仓库。
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考端侧部署来完成相应的部署工作。
Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考Paddle2ONNX 代码仓库。
PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考Paddle2ONNX 模型转换与预测来完成相应的部署工作。