TNT(Transformer-iN-Transformer)系列模型由华为诺亚于 2021 年提出,用于对 patch 级别和 pixel 级别的表示进行建模。在每个 TNT 块中,outer transformer block 用于处理 patch 嵌入,inner transformer block 从 pixel 嵌入中提取局部特征。通过线性变换层将 pixel 级特征投影到 patch 嵌入空间,然后加入到 patch 中。通过对 TNT 块的叠加,建立了用于图像识别的 TNT 模型。在 ImageNet 基准测试和下游任务上的实验证明了该 TNT 体系结构的优越性和有效性。例如,在计算量相当的情况下 TNT 能在 ImageNet 上达到 81.3% 的 top-1 精度,比 DeiT 高 1.5%。论文地址。
PaddleClas 所提供的该系列模型的预训练模型权重,均是基于其官方提供的权重转得。
Models | Top1 | Top5 | Reference top1 |
Reference top5 |
FLOPs (G) |
Params (M) |
---|---|---|---|---|---|---|
TNT_small | 0.8121 | 0.9563 | - | - | 5.2 | 23.8 |
备注: PaddleClas 所提供的该系列模型的预训练模型权重,均是基于其官方提供的权重转得。
安装 paddlepaddle 和 paddleclas 即可快速对图片进行预测,体验方法可以参考ResNet50 模型快速体验。
此部分内容包括训练环境配置、ImageNet数据的准备、该模型在 ImageNet 上的训练、评估、预测等内容。在 ppcls/configs/ImageNet/TNT/
中提供了该模型的训练配置,启动训练方法可以参考:ResNet50 模型训练、评估和预测。
备注: 由于 TNT 系列模型默认使用的 GPU 数量为 8 个,所以在训练时,需要指定8个GPU,如python3 -m paddle.distributed.launch --gpus="0,1,2,3,4,5,6,7" tools/train.py -c xxx.yaml
, 如果使用 4 个 GPU 训练,默认学习率需要减小一半,精度可能有损。
Paddle Inference 是飞桨的原生推理库, 作用于服务器端和云端,提供高性能的推理能力。相比于直接基于预训练模型进行预测,Paddle Inference可使用 MKLDNN、CUDNN、TensorRT 进行预测加速,从而实现更优的推理性能。更多关于Paddle Inference推理引擎的介绍,可以参考Paddle Inference官网教程。
Inference 的获取可以参考 ResNet50 推理模型准备 。
PaddleClas 提供了基于 python 预测引擎推理的示例。您可以参考ResNet50 基于 Python 预测引擎推理 。
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考服务器端 C++ 预测来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考基于 Visual Studio 2019 Community CMake 编译指南完成相应的预测库编译和模型预测工作。
Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考Paddle Serving 代码仓库。
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考模型服务化部署来完成相应的部署工作。
Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考Paddle Lite 代码仓库。
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考端侧部署来完成相应的部署工作。
Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考Paddle2ONNX 代码仓库。
PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考Paddle2ONNX 模型转换与预测来完成相应的部署工作。