-
-
Notifications
You must be signed in to change notification settings - Fork 23
/
ToolGammatoneFb.m
110 lines (88 loc) · 3.49 KB
/
ToolGammatoneFb.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
%computes a gammatone filterbank
%> see function MakeERBFilters.m from Slaneys Auditory Toolbox
%>
%> @param afAudioData: time domain sample data, dimension channels X samples
%> @param f_s: sample rate of audio data
%> @param iNumBands: number of filter bands
%> @param f_low: start frequency
%>
%> @retval X filtered signal (dimension bands X samples)
%> @retval f_c filterbank mid frequencies
% ======================================================================
function [X, f_c] = ToolGammatoneFb(afAudioData, f_s, iNumBands, f_low)
if (nargin < 4)
f_low = 100;
end
if (nargin < 3)
iNumBands = 20;
end
%initialization
fEarQ = 9.26449;
fBW = 24.7;
iOrder = 1;
T = 1/f_s;
% compute the mid frequencies
f_c = GetMidFrequencies_I (f_low, f_s/2, iNumBands, fEarQ, fBW);
% compute the coefficients
[afCoeffB, afCoeffA] = GetCoeffs_I ( f_c, ...
1.019*2*pi*(((f_c/fEarQ).^iOrder + fBW^iOrder).^(1/iOrder)), ...
T);
% allocate output memory
X = zeros(iNumBands, length(afAudioData));
% pre-processing: down-mixing
if (size(afAudioData,2)> 1)
afAudioData = mean(afAudioData,2);
end
% do the (cascaded) filter process
for (k = 1:iNumBands)
X(k,:) = afAudioData;
for (j = 1:4)
X(k,:) = filter(afCoeffB(j,:,k), afCoeffA(j,:,k), X(k,:));
end
end
end
%> see function ERBSpace.m from Slaneys Auditory Toolbox
function [f_c] = GetMidFrequencies_I (f_low, f_hi, iNumBands, fEarQ, fBW)
f_c = -(fEarQ*fBW) + exp((1:iNumBands)'*(-log(f_hi + fEarQ*fBW) + ...
log(f_low + fEarQ*fBW))/iNumBands) * (f_hi + fEarQ*fBW);
end
%> see function MakeERBFilters.m from Slaneys Auditory Toolbox
function [afCoeffB, afCoeffA] = GetCoeffs_I (f_c, B, T)
fCos = cos(2*f_c*pi*T);
fSin = sin(2*f_c*pi*T);
fExp = exp(B*T);
fSqrtA = 2*sqrt(3+2^1.5);
fSqrtS = 2*sqrt(3-2^1.5);
A0 = T;
A2 = 0;
B0 = 1;
B1 = -2*fCos./fExp;
B2 = exp(-2*B*T);
A11 = -(2*T*fCos./fExp + fSqrtA*T*fSin./ fExp)/2;
A12 = -(2*T*fCos./fExp - fSqrtA*T*fSin./ fExp)/2;
A13 = -(2*T*fCos./fExp + fSqrtS*T*fSin./ fExp)/2;
A14 = -(2*T*fCos./fExp - fSqrtS*T*fSin./ fExp)/2;
fSqrtA = sqrt(3 + 2^(3/2));
fSqrtS = sqrt(3 - 2^(3/2));
fArg = i*f_c*pi*T;
afGain = ...
abs((-2*exp(4*fArg)*T+2*exp(-(B*T)+2*fArg).*T.*(fCos-fSqrtS*fSin)).* ...
(-2*exp(4*fArg)*T+2*exp(-(B*T)+2*fArg).*T.*(fCos+fSqrtS*fSin)).* ...
(-2*exp(4*fArg)*T+2*exp(-(B*T)+2*fArg).*T.*(fCos-fSqrtA*fSin)).* ...
(-2*exp(4*fArg)*T+2*exp(-(B*T)+2*fArg).*T.*(fCos+fSqrtA*fSin))./ ...
(-2 ./ exp(2*B*T) - 2*exp(4*fArg) + 2*(1 + exp(4*fArg))./fExp).^4);
% this is Slaneys compact format - now resort into 3D Matrices
%fcoefs = [A0*ones(length(f_c),1) A11 A12 A13 A14 A2*ones(length(f_c),1) B0*ones(length(f_c),1) B1 B2 afGain];
afCoeffB = zeros(4,3,length(B));
afCoeffA = zeros(4,3,length(B));
for (k = 1:length(B))
afCoeffB(1,:,k) = [A0 A11(k) A2]/afGain(k);
afCoeffA(1,:,k) = [B0 B1(k) B2(k)];
afCoeffB(2,:,k) = [A0 A12(k) A2];
afCoeffA(2,:,k) = [B0 B1(k) B2(k)];
afCoeffB(3,:,k) = [A0 A13(k) A2];
afCoeffA(3,:,k) = [B0 B1(k) B2(k)];
afCoeffB(4,:,k) = [A0 A14(k) A2];
afCoeffA(4,:,k) = [B0 B1(k) B2(k)];
end
end