-
Notifications
You must be signed in to change notification settings - Fork 16
/
compose.py
251 lines (218 loc) · 12.1 KB
/
compose.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import numpy as np
import open3d as o3d
from plyfile import PlyData, PlyElement
import torch
import os
from os import makedirs, path
from errno import EEXIST
from sklearn.neighbors import KDTree
from sklearn.cluster import DBSCAN
from simple_knn._C import distCUDA2
from torch import nn
import argparse
C0 = 0.28209479177387814
max_sh_degree=0
def RGB2SH(rgb):
return (rgb - 0.5) / C0
def inverse_sigmoid(x):
return torch.log(x/(1-x))
def construct_list_of_attributes(features_dc,features_rest,scaling,rotation):
l = ['x', 'y', 'z', 'nx', 'ny', 'nz']
# All channels except the 3 DC
for i in range(features_dc.shape[1]*features_dc.shape[2]):
l.append('f_dc_{}'.format(i))
for i in range(features_rest.shape[1]*features_rest.shape[2]):
l.append('f_rest_{}'.format(i))
l.append('opacity')
for i in range(scaling.shape[1]):
l.append('scale_{}'.format(i))
for i in range(rotation.shape[1]):
l.append('rot_{}'.format(i))
return l
def create_from_pcd(pcd,path):
fused_point_cloud = torch.tensor(np.asarray(pcd.points)).float().cuda()
fused_color = RGB2SH(torch.tensor(np.asarray(pcd.colors)).float().cuda())
features = torch.zeros((fused_color.shape[0], 3, (0 + 1) ** 2)).float().cuda()
features[:, :3, 0 ] = fused_color
features[:, 3:, 1:] = 0.0
print("Number of points at initialisation : ", fused_point_cloud.shape[0])
dist2 = torch.clamp_min(distCUDA2(torch.from_numpy(np.asarray(pcd.points)).float().cuda()), 0.0000001)
scales = torch.log(torch.sqrt(dist2))[...,None].repeat(1, 3)
rots = torch.zeros((fused_point_cloud.shape[0], 4), device="cuda")
rots[:, 0] = 1
opacities = inverse_sigmoid(0.999 * torch.ones((fused_point_cloud.shape[0], 1), dtype=torch.float, device="cuda"))
xyz = nn.Parameter(fused_point_cloud.requires_grad_(True))
features_dc = nn.Parameter(features[:,:,0:1].transpose(1, 2).contiguous().requires_grad_(True))
features_rest = nn.Parameter(features[:,:,1:].transpose(1, 2).contiguous().requires_grad_(True))
scaling = nn.Parameter(scales.requires_grad_(True))
rotation = nn.Parameter(rots.requires_grad_(True))
opacity = nn.Parameter(opacities.requires_grad_(True))
max_radii2D = torch.zeros((xyz.shape[0]), device="cuda")
xyz = xyz.detach().cpu().numpy()
normals = np.zeros_like(xyz)
f_dc = features_dc.detach().transpose(1, 2).flatten(start_dim=1).contiguous().cpu().numpy()
f_rest = features_rest.detach().transpose(1, 2).flatten(start_dim=1).contiguous().cpu().numpy()
opacities = opacity.detach().cpu().numpy()
scale = scaling.detach().cpu().numpy()
rotation = rotation.detach().cpu().numpy()
dtype_full = [(attribute, 'f4') for attribute in construct_list_of_attributes(features_dc, features_rest, scaling, rotation)]
elements = np.empty(xyz.shape[0], dtype=dtype_full)
attributes = np.concatenate((xyz, normals, f_dc, f_rest, opacities, scale, rotation), axis=1)
elements[:] = list(map(tuple, attributes))
el = PlyElement.describe(elements, 'vertex')
PlyData([el]).write(path)
def load_ply(path):
plydata = PlyData.read(path)
xyz = np.stack((np.asarray(plydata.elements[0]["x"]),
np.asarray(plydata.elements[0]["y"]),
np.asarray(plydata.elements[0]["z"])), axis=1)
opacities = np.asarray(plydata.elements[0]["opacity"])[..., np.newaxis]
features_dc = np.zeros((xyz.shape[0], 3, 1))
features_dc[:, 0, 0] = np.asarray(plydata.elements[0]["f_dc_0"])
features_dc[:, 1, 0] = np.asarray(plydata.elements[0]["f_dc_1"])
features_dc[:, 2, 0] = np.asarray(plydata.elements[0]["f_dc_2"])
extra_f_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("f_rest_")]
extra_f_names = sorted(extra_f_names, key = lambda x: int(x.split('_')[-1]))
assert len(extra_f_names)==3*(max_sh_degree + 1) ** 2 - 3
features_extra = np.zeros((xyz.shape[0], len(extra_f_names)))
for idx, attr_name in enumerate(extra_f_names):
features_extra[:, idx] = np.asarray(plydata.elements[0][attr_name])
# Reshape (P,F*SH_coeffs) to (P, F, SH_coeffs except DC)
features_extra = features_extra.reshape((features_extra.shape[0], 3, (max_sh_degree + 1) ** 2 - 1))
scale_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("scale_")]
scale_names = sorted(scale_names, key = lambda x: int(x.split('_')[-1]))
scales = np.zeros((xyz.shape[0], len(scale_names)))
for idx, attr_name in enumerate(scale_names):
scales[:, idx] = np.asarray(plydata.elements[0][attr_name])
rot_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("rot")]
rot_names = sorted(rot_names, key = lambda x: int(x.split('_')[-1]))
rots = np.zeros((xyz.shape[0], len(rot_names)))
for idx, attr_name in enumerate(rot_names):
rots[:, idx] = np.asarray(plydata.elements[0][attr_name])
# xyz features_dc features_extra opacities scales rots
return xyz, features_dc, features_extra, opacities, scales, rots
def mkdir_p(folder_path):
# Creates a directory. equivalent to using mkdir -p on the command line
try:
makedirs(folder_path)
except OSError as exc:
if exc.errno == EEXIST and path.isdir(folder_path):
pass
else:
raise
def convert_np_tensor(xyz, features_dc, features_rest, opacity, scaling, rotation):
xyz = torch.tensor(xyz, dtype=torch.float, device="cuda")
features_dc = torch.tensor(features_dc, dtype=torch.float, device="cuda").transpose(1, 2).contiguous()
features_rest = torch.tensor(features_rest, dtype=torch.float, device="cuda").transpose(1, 2).contiguous()
opacity = torch.tensor(opacity, dtype=torch.float, device="cuda")
scaling = torch.tensor(scaling, dtype=torch.float, device="cuda")
rotation = torch.tensor(rotation, dtype=torch.float, device="cuda")
return xyz, features_dc, features_rest, opacity, scaling, rotation
def construct_list_of_attributes(features_dc, features_rest, scaling, rotation):
l = ['x', 'y', 'z', 'nx', 'ny', 'nz']
# All channels except the 3 DC
for i in range(features_dc.shape[1]*features_dc.shape[2]):
l.append('f_dc_{}'.format(i))
for i in range(features_rest.shape[1]*features_rest.shape[2]):
l.append('f_rest_{}'.format(i))
l.append('opacity')
for i in range(scaling.shape[1]):
l.append('scale_{}'.format(i))
for i in range(rotation.shape[1]):
l.append('rot_{}'.format(i))
return l
def similar_points_tree(point_cloud_A, point_cloud_B, threshold):
tree = KDTree(point_cloud_B)
distances, indices = tree.query(point_cloud_A, k=1)
similar_indices = np.where(distances < threshold)[0]
return similar_indices
def composition(xyz_rgb, features_dc_rgb, features_extra_rgb, opacities_rgb, scales_rgb, rots_rgb,path_2):
xyz_binary, features_dc_binary, features_extra_binary, opacities_binary, scales_binary, rots_binary = load_ply(path_2)
print(xyz_binary.shape)
xyz = np.concatenate((xyz_rgb, xyz_binary), axis=0)
features_dc = np.concatenate((features_dc_rgb,features_dc_binary),axis=0)
features_rest = np.concatenate((features_extra_rgb,features_extra_binary),axis=0)
opacity = np.concatenate((opacities_rgb, opacities_binary),axis=0)
scaling = np.concatenate((scales_rgb, scales_binary),axis=0)
rotation = np.concatenate((rots_rgb , rots_binary),axis=0)
return xyz, features_dc, features_rest, opacity, scaling, rotation
def save_ply(xyz, features_dc, features_rest, opacity, scaling, rotation, path_save):
mkdir_p(os.path.dirname(path_save))
xyz = xyz.detach().cpu().numpy()
normals = np.zeros_like(xyz)
f_dc = features_dc.detach().transpose(1, 2).flatten(start_dim=1).contiguous().cpu().numpy()
f_rest = features_rest.detach().transpose(1, 2).flatten(start_dim=1).contiguous().cpu().numpy()
opacities = opacity.detach().cpu().numpy()
scale = scaling.detach().cpu().numpy()
rotation = rotation.detach().cpu().numpy()
dtype_full = [(attribute, 'f4') for attribute in construct_list_of_attributes(features_dc, features_rest, scaling, rotation)]
elements = np.empty(xyz.shape[0], dtype=dtype_full)
attributes = np.concatenate((xyz, normals, f_dc, f_rest, opacities, scale, rotation), axis=1)
elements[:] = list(map(tuple, attributes))
el = PlyElement.describe(elements, 'vertex')
PlyData([el]).write(path_save)
# Main Procedure
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Process Gaussians.')
parser.add_argument('--original_ply', type=str, required=True, help='The path to the Original Gaussians.')
parser.add_argument('--supp_ply', type=str, required=True, help='The path to the Inpainting Gaussians')
parser.add_argument('--save_ply', type=str, required=True, help='The path to save the Gaussians.')
parser.add_argument('--temp_ply', type=str, default='temp.ply', help='The path to save the Temporary Gaussians.')
parser.add_argument('--nb_points', type=int, default=100, help='Number of points for the remove_radius_outlier function.')
parser.add_argument('--radius', type=float, default=0.1, help='Radius for the remove_radius_outlier function.')
parser.add_argument('--threshold', type=float, default=1.0, help='Threshold for the similar_points_tree function.')
args = parser.parse_args()
origin = args.original_ply
supp = args.supp_ply
path_save = args.save_ply
nb_points = args.nb_points
radius = args.radius
threshold = args.threshold
processed_supp = args.temp_ply
plydata = PlyData.read(supp)
x = plydata['vertex']['x']
y = plydata['vertex']['y']
z = plydata['vertex']['z']
r = plydata['vertex']['red']
g = plydata['vertex']['green']
b = plydata['vertex']['blue']
points = np.column_stack([x, y, z])
colors = np.column_stack([r, g, b])
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(points)
normalized_colors = colors / 255.0
pcd.colors = o3d.utility.Vector3dVector(normalized_colors)
cl, ind = pcd.remove_statistical_outlier(nb_neighbors=5, std_ratio=4.0)
pcd = pcd.select_by_index(ind)
create_from_pcd(pcd,processed_supp)
# Load Painted Gaussians and Original Gaussians
xyz, features_dc, features_extra, opacities, scales, rots = load_ply(processed_supp)
print("There are {} points in the inpainted Gaussians.".format(len(xyz)))
xyz2, features_dc2, features_extra2, opacities2, scales2, rots2 = load_ply(origin)
print("There are {} points in the original Gaussians.".format(len(xyz2)))
# Calculate points near Inpainting Gaussians
points = xyz2
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(points)
xyz_similar = similar_points_tree(xyz2,xyz,threshold)
print("There are {} similar points in the two point clouds.".format(len(xyz_similar)))
# Remove the floaters point in the complemented area
cl, ind = pcd.remove_radius_outlier(nb_points=nb_points, radius=radius)
real = set(xyz_similar.tolist()).difference(set(ind))
ind = list(real)
print(len(ind))
indices = np.array([True] * len(xyz2))
indices[ind] = False
xyz_rgb = xyz2[indices]
features_dc = features_dc2 [indices]
features_rest = features_extra2[indices]
opacity = opacities2[indices]
scaling = scales2[indices]
rotation = rots2[indices]
print("{} floaters were removed.".format(len(xyz2)-len(xyz_rgb)))
# Compose Inpainting Gaussians and Original Gaussians
xyz_rgb, features_dc, features_rest, opacity, scaling, rotation = composition(xyz_rgb, features_dc, features_rest,
opacity,scaling,rotation,processed_supp)
xyz, features_dc, features_rest, opacity, scaling, rotation = convert_np_tensor(xyz_rgb, features_dc, features_rest,
opacity, scaling, rotation)
save_ply(xyz, features_dc, features_rest, opacity, scaling, rotation,path_save)