Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

LU decomposition error raised when run wine sample #554

Open
Bitros opened this issue Jul 19, 2023 · 0 comments
Open

LU decomposition error raised when run wine sample #554

Bitros opened this issue Jul 19, 2023 · 0 comments

Comments

@Bitros
Copy link

Bitros commented Jul 19, 2023

Describe the bug

Hi. I ran the sample https://github.com/alkaline-ml/pmdarima#quickstart-examples under Python 3.9.17 and got warnings below

C:\Users\{user}\program\miniconda3\envs\pywork\lib\site-packages\pmdarima\arima\_auto_solvers.py:524: ModelFitWarning: Error fitting  ARIMA(4,1,0)(2,0,2)[12]           (if you do not want to see these warnings, run with error_action="ignore").
Traceback:
Traceback (most recent call last):
  File "C:\Users\{user}\program\miniconda3\envs\pywork\lib\site-packages\pmdarima\arima\_auto_solvers.py", line 508, in _fit_candidate_model
    fit.fit(y, X=X, **fit_params)
  File "C:\Users\{user}\program\miniconda3\envs\pywork\lib\site-packages\pmdarima\arima\arima.py", line 603, in fit
    self._fit(y, X, **fit_args)
  File "C:\Users\{user}\program\miniconda3\envs\pywork\lib\site-packages\pmdarima\arima\arima.py", line 524, in _fit
    fit, self.arima_res_ = _fit_wrapper()
  File "C:\Users\{user}\program\miniconda3\envs\pywork\lib\site-packages\pmdarima\arima\arima.py", line 510, in _fit_wrapper
    fitted = arima.fit(
  File "C:\Users\{user}\program\miniconda3\envs\pywork\lib\site-packages\statsmodels\tsa\statespace\mlemodel.py", line 704, in fit
    mlefit = super(MLEModel, self).fit(start_params, method=method,
  File "C:\Users\{user}\program\miniconda3\envs\pywork\lib\site-packages\statsmodels\base\model.py", line 563, in fit
    xopt, retvals, optim_settings = optimizer._fit(f, score, start_params,
  File "C:\Users\{user}\program\miniconda3\envs\pywork\lib\site-packages\statsmodels\base\optimizer.py", line 241, in _fit
    xopt, retvals = func(objective, gradient, start_params, fargs, kwargs,
  File "C:\Users\{user}\program\miniconda3\envs\pywork\lib\site-packages\statsmodels\base\optimizer.py", line 651, in _fit_lbfgs
    retvals = optimize.fmin_l_bfgs_b(func, start_params, maxiter=maxiter,
  File "C:\Users\{user}\program\miniconda3\envs\pywork\lib\site-packages\scipy\optimize\_lbfgsb_py.py", line 197, in fmin_l_bfgs_b
    res = _minimize_lbfgsb(fun, x0, args=args, jac=jac, bounds=bounds,
  File "C:\Users\{user}\program\miniconda3\envs\pywork\lib\site-packages\scipy\optimize\_lbfgsb_py.py", line 359, in _minimize_lbfgsb
    f, g = func_and_grad(x)
  File "C:\Users\{user}\program\miniconda3\envs\pywork\lib\site-packages\scipy\optimize\_differentiable_functions.py", line 285, in fun_and_grad
    self._update_fun()
  File "C:\Users\{user}\program\miniconda3\envs\pywork\lib\site-packages\scipy\optimize\_differentiable_functions.py", line 251, in _update_fun
    self._update_fun_impl()
  File "C:\Users\{user}\program\miniconda3\envs\pywork\lib\site-packages\scipy\optimize\_differentiable_functions.py", line 155, in update_fun
    self.f = fun_wrapped(self.x)
  File "C:\Users\{user}\program\miniconda3\envs\pywork\lib\site-packages\scipy\optimize\_differentiable_functions.py", line 137, in fun_wrapped
    fx = fun(np.copy(x), *args)
  File "C:\Users\{user}\program\miniconda3\envs\pywork\lib\site-packages\statsmodels\base\model.py", line 531, in f
    return -self.loglike(params, *args) / nobs
  File "C:\Users\{user}\program\miniconda3\envs\pywork\lib\site-packages\statsmodels\tsa\statespace\mlemodel.py", line 939, in loglike
    loglike = self.ssm.loglike(complex_step=complex_step, **kwargs)
  File "C:\Users\{user}\program\miniconda3\envs\pywork\lib\site-packages\statsmodels\tsa\statespace\kalman_filter.py", line 983, in loglike
    kfilter = self._filter(**kwargs)
  File "C:\Users\{user}\program\miniconda3\envs\pywork\lib\site-packages\statsmodels\tsa\statespace\kalman_filter.py", line 903, in _filter
    self._initialize_state(prefix=prefix, complex_step=complex_step)
  File "C:\Users\{user}\program\miniconda3\envs\pywork\lib\site-packages\statsmodels\tsa\statespace\representation.py", line 983, in _initialize_state
    self._statespaces[prefix].initialize(self.initialization,
  File "statsmodels\tsa\statespace\_representation.pyx", line 1373, in statsmodels.tsa.statespace._representation.dStatespace.initialize
  File "statsmodels\tsa\statespace\_representation.pyx", line 1362, in statsmodels.tsa.statespace._representation.dStatespace.initialize
  File "statsmodels\tsa\statespace\_initialization.pyx", line 288, in statsmodels.tsa.statespace._initialization.dInitialization.initialize
  File "statsmodels\tsa\statespace\_initialization.pyx", line 406, in statsmodels.tsa.statespace._initialization.dInitialization.initialize_stationary_stationary_cov
  File "statsmodels\tsa\statespace\_tools.pyx", line 1206, in statsmodels.tsa.statespace._tools._dsolve_discrete_lyapunov
numpy.linalg.LinAlgError: LU decomposition error.

  warnings.warn(warning_str, ModelFitWarning)

To Reproduce

Just run the wine sample.

Versions

System:
    python: 3.9.17 (main, Jul  5 2023, 21:22:06) [MSC v.1916 64 bit (AMD64)]
executable: C:\Users\{user}\program\miniconda3\envs\pywork\python.exe
   machine: Windows-10-10.0.22621-SP0

Python dependencies:
        pip: 23.1.2
 setuptools: 67.8.0
    sklearn: 1.2.2
statsmodels: 0.13.5
      numpy: 1.25.0
      scipy: 1.10.1
     Cython: 0.29.35
     pandas: 1.5.3
     joblib: 1.2.0
   pmdarima: 2.0.3
Windows-10-10.0.22621-SP0
Python 3.9.17 (main, Jul  5 2023, 21:22:06) [MSC v.1916 64 bit (AMD64)]
pmdarima 2.0.3
NumPy 1.25.0
SciPy 1.10.1
Scikit-Learn 1.2.2
Statsmodels 0.13.5

Expected Behavior

Run as usual without any warnings and errors.

Actual Behavior

Warnings raised.

Additional Context

No response

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

No branches or pull requests

1 participant