-
Notifications
You must be signed in to change notification settings - Fork 77
/
Copy pathsearch_hyperparams.py
67 lines (51 loc) · 2.61 KB
/
search_hyperparams.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
"""Peform hyperparemeters search"""
import argparse
import os
from subprocess import check_call
import sys
import utils
PYTHON = sys.executable
parser = argparse.ArgumentParser()
parser.add_argument('--parent_dir', default='experiments/learning_rate',
help='Directory containing params.json')
parser.add_argument('--data_dir', default='data/64x64_SIGNS', help="Directory containing the dataset")
parser.add_argument('--model', default='srcnn', help="filename of the model")
parser.add_argument('--model_type', default='cnn', help="type of the model")
def launch_training_job(parent_dir, data_dir, job_name, params, model, model_type):
"""Launch training of the model with a set of hyperparameters in parent_dir/job_name
Args:
model_dir: (string) directory containing config, weights and log
data_dir: (string) directory containing the dataset
params: (dict) containing hyperparameters
"""
# Create a new folder in parent_dir with unique_name "job_name"
model_dir = os.path.join(parent_dir, job_name)
if not os.path.exists(model_dir):
os.makedirs(model_dir)
# Write parameters in json file
json_path = os.path.join(model_dir, 'params.json')
params.save(json_path)
# Launch training with this config
cmd = None
if model_type == "cnn":
cmd = "{python} train_cnn.py --model_dir {model_dir} --data_dir {data_dir} --model {model} --cuda cuda0 --optim adam".format(python=PYTHON, model_dir=model_dir, data_dir=data_dir, model=model)
elif model_type == "gan":
cmd = "{python} train_gan.py --model_dir {model_dir} --data_dir {data_dir} --model {model} --cuda cuda0 --optim adam".format(python=PYTHON, model_dir=model_dir, data_dir=data_dir, model=model)
print(cmd)
check_call(cmd, shell=True)
if __name__ == "__main__":
# Load the "reference" parameters from parent_dir json file
args = parser.parse_args()
json_path = os.path.join(args.parent_dir, 'params.json')
assert os.path.isfile(json_path), "No json configuration file found at {}".format(json_path)
params = utils.Params(json_path)
# Perform hypersearch over one parameter
learning_rates = [1e-3, 5e-4, 1e-4]
for learning_rate in learning_rates:
# Modify the relevant parameter in params
params.learning_rate = learning_rate
print("get learning rate")
# Launch job (name has to be unique)
job_name = "learning_rate_{}".format(learning_rate)
launch_training_job(args.parent_dir, args.data_dir, job_name, params, args.model, args.model_type)
print("finished one")