forked from djlee9812/prop-design
-
Notifications
You must be signed in to change notification settings - Fork 0
/
climb.py
164 lines (153 loc) · 5.3 KB
/
climb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.ticker
import time
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
from air_data import change_air_data
from qprop_sweep import opt_dbeta, get_nums
from qmil_design import design_prop
plt.style.use('seaborn')
def follow_trajectory(ts, hs, vs, thrusts, npt=60, optimize=True, show=False,
prop="best_prop", save=True):
"""
Calculate propulsion parameters over a cycle trajectory and saves data
to "cycle.npz" using QProp
Requires time, altitude, airspeed, and thrust over the 24 hour trajectory
Parameters
----------
ts : array-like
Points in time
hs : array-like
Altitudes at given time points
vs : array-like
Airspeeds at given time poitns
thrusts : array-like
Required thrust at given time points
npt : int, optional
Number of time samples to evaluate/optimize at
unopt : boolean, optional
If checked, variable pitch is not allowed
show : boolean, optional
If checked, will show discretized altitude and airspeed over cycle
prop : string, optional
Propeller to use for analysis
save : boolean, optional
If true, the trajectory data will save as an npz file
Returns
---------
eff : float
Average efficiency over 24h cycle
"""
step = len(ts) // npt if npt <= len(ts) else 1
result = []
last_h = -100
# Iterate through time steps
for i, t in enumerate(ts[::step]):
i *= step
h, v, thrust = (hs[i], vs[i], thrusts[i])
p = thrust * v
# If alt change > 100m, recalculate air data
# if abs(h-last_h) > 100:
change_air_data(h)
last_h = h
if optimize:
opt = opt_dbeta(v, thrust, prop=prop)
dbeta = opt.x
eta_opt = -opt.fun
else:
dbeta = 0
data = get_nums(dbeta, v, thrust, prop=prop)
rpm = data[1]
Q = data[4]
Pshaft = data[5]
eta = data[9]
J = data[10]
eta_tot = data[14]
result.append([t, h, v, p, thrust, rpm, Q, Pshaft, J, dbeta, eta, eta_tot])
result = np.array(result)
# print("Average Efficiency:", np.mean(result[:,10]))
if show:
plt.figure()
plt.title('24 Hour Trajectory')
plt.subplot(211)
plt.plot(result[:,0], result[:,1]/1000, 'o-')
plt.ylabel('Altitude [km]')
plt.subplot(212)
plt.plot(result[:,0], result[:,2], 'o-')
plt.ylabel('Airspeed [m/s]')
plt.xlabel("time [hr]")
plt.show()
if save:
savefile = "climb" if optimize else "climb_unopt"
np.savez(savefile, res=result)
return np.mean(result[:,10])
def plot_trajectory(data_file="cycle.npz"):
"""
Plot various propulsion parameters from cycle.npz
Parameters
----------
data_file : str, optional
Name/Address of file containing plot data (from follow_trajectory())
"""
result = np.load(data_file)["res"].T
t, h, v, p, thrust, rpm, Q, Pshaft, J, dbeta, eta, eta_tot = result
print("Avg RPM", np.mean(rpm), "PShaft", np.mean(Pshaft), "Q", np.mean(Q))
print("Max RPM", max(rpm), "PShaft", max(Pshaft), "Q", max(Q))
fig = plt.figure(figsize=(12,7.5))
ax1 = plt.subplot(321)
# fig.suptitle("Climb for each Propeller")
ax1.plot(t, h/304.88, ".-", color="cornflowerblue")
ax1.set_ylabel('Altitude [kft]', color="midnightblue")
# ax12 = ax1.twinx()
ax12 = plt.subplot(322)
ax12.plot(t, rpm, ".-", color="indianred")
ax12.set_ylabel("RPM", color="maroon")
# ax12.grid(None)
ax2 = plt.subplot(323)
ax2.plot(t, thrust, ".-", color="cornflowerblue")
ax2.set_ylabel('Thrust [N]', color="midnightblue")
# ax22 = ax2.twinx()
ax22 = plt.subplot(324)
ax22.plot(t, eta, ".-", color="indianred")
ax22.set_ylabel(r'$\eta$', color="maroon")
# ax22.grid(None)
ax3 = plt.subplot(325)
ax3.plot(t, Pshaft, ".-", color="indianred")
ax3.set_ylabel('Shaft Power [W]', color="maroon")
# ax32 = ax3.twinx()
ax32 = plt.subplot(326)
ax32.plot(t, Q, ".-", color="indianred")
ax32.set_ylabel('Required Torque [Nm]', color="maroon")
ax3.set_xlabel("Time after Takeoff [hr]")
ax32.set_xlabel("Time after Takeoff [hr]")
plt.tight_layout()
# ax32.grid(None)
plt.figure()
plt.plot(J, eta, ".-")
plt.xlabel("Advance Ratio")
plt.ylabel(r"$\eta$")
plt.title("Advance Ratio vs Efficiency")
plt.figure()
plt.plot(rpm, Q, ".-")
plt.xlabel("RPM")
plt.ylabel("Torque Requirement [N/m]")
plt.title("Motor Torque Requirement vs RPM for Ascent")
plt.tight_layout()
plt.show()
if __name__ == "__main__":
num_motor = 4
data = np.load('climb_path.npz')
ts = data['t'][:81]/3600
hs = data['h'][:81]
vs = data['v'][:81]
thrusts = data['thrust'][:81]/num_motor
# start = time.time()
# eff_opt = follow_trajectory(ts, hs, vs, thrusts, npt=200, optimize=True)
# print("Var Pitch Average Efficiency:", eff_opt)
# plot_trajectory("climb.npz")
# print(time.time() - start)
eff_unopt = follow_trajectory(ts, hs, vs, thrusts, npt=200, optimize=False)
print("Fixed Pitch Average Efficiency:", eff_unopt)
plot_trajectory("climb_unopt.npz")
# print(time.time() - start)