-
-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathFunctionOptimization.m
147 lines (128 loc) · 4.63 KB
/
FunctionOptimization.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Alp Sayin - alpsayin[at]alpsayin[dot]com - https://alpsayin.com
% Matlab Genetic Algorithm
% Spring 2012
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% CLEAN-UP
clear;close all;clc;
tic
%% PARAMETERS
populationSize = 150 ;
numberOfGenes = 40;
crossoverProbability = 0.8 ;
mutationProbability = 0.0625;
tournamentSelectionParameter = 0.5;
variableRange = 10.0;
numberOfGenerations = 250;
numberOfVariables = 2;
tournamentSize = 10;
numberOfReplications = 2;
verbose = true;
draw_plots = true;
% UNLESS THE FITNESS FUNCTION IS REALLY DIFFICULT TO COMPUTE, IT'S FASTER
% NOT TO USE PARALLEL COMPUTATION
runparallel = false;
%% VARIABLES
fitness = zeros(populationSize, 1);
%% PLOTTING SETUP
if draw_plots
fitnessFigureHandle = figure;
hold on;
set(fitnessFigureHandle,'Position',[50,50,500,200]);
set(fitnessFigureHandle,'DoubleBuffer','on');
axis([1 numberOfGenerations -variableRange variableRange]);
bestPlotHandle = plot(1:numberOfGenerations, zeros(1,numberOfGenerations));
textHandle = text(30,2.6, sprintf('best: %4.3f', 0.0));
hold off;
drawnow;
surfaceFigureHandle= figure;
hold on;
set(surfaceFigureHandle,'DoubleBuffer','on');
delta=0.1;
limit = fix(2*variableRange/delta)+1 ;
[xValues, yValues] = meshgrid(-variableRange: delta:variableRange,-variableRange: delta:variableRange);
zValues= zeros(limit,limit);
for j = 1: limit
for k = 1: limit
zValues(j,k) = EvaluateIndividual([xValues(j,k) yValues(j,k)]);
end
end
surfl(xValues,yValues,zValues)
colormap gray;
shading interp;
view ([-7 -9 10]);
decodedPopulation = zeros(populationSize,numberOfVariables);
populationPlotHandle = plot3(decodedPopulation(:,1),decodedPopulation(:,2),fitness(:),'kp');
hold off;
drawnow;
end
%% INITIATE POPULATION
population = InitializePopulation(populationSize, numberOfGenes) ;
%% RUN GENERATIONS
for iGeneration = 1: numberOfGenerations
%% FIND MAXIMUM FITNESS OF POPULATION
decodedPopulation = DecodePopulation(population, numberOfVariables, variableRange);
fitness = EvaluatePopulation(decodedPopulation, runparallel);
[maximumFitness, bestIndividualIndex] = max(fitness);
xBest = decodedPopulation(bestIndividualIndex,:);
% % Deprecated - to be deleted in the next iteration
% maximumFitness = 0.0;
% for i = 1: populationSize
% chromosome = population(i,:);
% x = DecodeChromosome(chromosome, numberOfVariables, variableRange) ;
% decodedPopulation(i,:)= x;
% fitness(i) = EvaluateIndividual(x);
% if ( fitness(i)> maximumFitness)
% maximumFitness = fitness(i);
% bestIndividualIndex = i;
% xBest=x ;
% end
% end
% Print out
if verbose
fprintf('Maximum Fitness: %d\n',maximumFitness);
fprintf('Best Solution: %d\n',xBest);
end
%% COPY POPULATION
newPopulation = population;
%% NEW GENERATION
for i = 1:tournamentSize:populationSize
%% TOURNAMENT SELECTION
i1 = TournamentSelect(fitness,tournamentSelectionParameter,tournamentSize);
i2 = TournamentSelect(fitness,tournamentSelectionParameter,tournamentSize);
chromosome1 = population(i1,:);
chromosome2 = population(i2,:);
%% CROSS-OVER
r = rand;
if ( r < crossoverProbability)
newChromosomePair = Cross(chromosome1, chromosome2);
newPopulation(i,:) = newChromosomePair(1,:);
newPopulation(i+1,:) = newChromosomePair(2,:);
else
newPopulation(i,:) = chromosome1;
newPopulation(i+1,:) = chromosome2;
end
end
%% MUTATE
newPopulation = Mutate(newPopulation, mutationProbability);
%% PRESERVATION OF PREVIOUS BEST SOLUTION
bestChromosome = population(bestIndividualIndex,:);
newPopulation = InsertBestIndividual(newPopulation, bestChromosome, numberOfReplications);
%% COPY THE NEW POPULATION ONTO CURRENT POPULATION
population = newPopulation;
%% PLOT CURRENT SITUATION
if draw_plots
plotvector = get(bestPlotHandle,'YData');
plotvector(iGeneration)= maximumFitness;
set(bestPlotHandle,'YData',plotvector);
set(textHandle,'String', sprintf('best: %4.3f',maximumFitness));
set(populationPlotHandle,'XData', decodedPopulation(:,1),'YData',decodedPopulation(:,2),'ZData', fitness(:));
drawnow;
end
end
% Print out
fprintf('Maximum Fitness: %d\n',maximumFitness);
fprintf('Best Solution: %d\n',xBest);
toc