Releases: alteryx/evalml
Releases · alteryx/evalml
v0.49.0
Enhancements
- Added
use_covariates
parameter toARIMARegressor
#3407 AutoMLSearch
will setuse_covariates
toFalse
for ARIMA when dataset is large #3407- Add ability to retrieve logical types to a component in the graph via
get_component_input_logical_types
#3428 - Add ability to get logical types passed to the last component via
last_component_input_logical_types
#3428
Fixes
- Fix conda build after PR
3407
#3429
Changes
- Moved model understanding metrics from
graph.py
into a separate file #3417 - Unpin
click
dependency #3420 - For
IterativeAlgorithm
, put time series algorithms first #3407 - Use
prophet-prebuilt
to install prophet in extras #3407
Breaking Changes
- Moved model understanding metrics from
graph.py
tometrics.py
#3417
v0.48.0
v0.48.0 Mar. 28, 2022
Enhancements
- Replaced
pipeline_parameters
andcustom_hyperparameters
withsearch_parameters
inAutoMLSearch
#3373 - Add support for oversampling in time series classification problems #3387
Fixes
- Fixed
TimeSeriesFeaturizer
to make it deterministic when creating and choosing columns #3384 - Fixed bug where Email/URL features with missing values would cause the imputer to error out #3388
Changes
- Update maintainers to add Frank #3382
- Allow woodwork version 0.14.0 to be installed #3381
- Moved partial dependence functions from
graph.py
to a separate file #3404 - Pin
click
at8.0.4
due to incompatibility withblack
#3413
Documentation Changes
- Added automl user guide section covering search algorithms #3394
- Updated broken links and automated broken link detection #3398
- Upgraded nbconvert #3402, #3411
Testing Changes
- Updated scheduled workflows to only run on Alteryx owned repos (#3395)
- Exclude documentation versions other than latest from broken link check #3401
Breaking Changes
- Moved partial dependence functions from
graph.py
topartial_dependence.py
#3404
v0.47.0
v0.47.0 Mar. 17, 2022
Enhancements
- Added
TimeSeriesFeaturizer
into ARIMA-based pipelines #3313 - Added caching capability for ensemble training during
AutoMLSearch
#3257 - Added new error code for zero unique values in
NoVarianceDataCheck
#3372
Fixes
- Fixed
get_pipelines
to reset pipeline threshold for binary cases #3360
Changes
- Update maintainers #3365
Documentation Changes
- Fixed documentation links to point to correct pages #3358
Testing Changes
- Checkout main branch in build_conda_pkg job #3375
v0.46.0
v0.46.0 Mar. 3, 2022
Enhancements
- Added
test_size
parameter toClassImbalanceDataCheck
#3341 - Make target optional for
NoVarianceDataCheck
#3339
Changes
- Removed
python_version<3.9
environment marker from sktime dependency #3332 - Updated
DatetimeFormatDataCheck
to return all messages and not return early if NaNs are detected #3354
Documentation Changes
- Added in-line tabs and copy-paste functionality to documentation, overhauled Install page #3353
v0.45.0
v0.45.0 Feb. 18, 2022
Enhancements
- Added support for pandas >= 1.4.0 #3324
- Standardized feature importance for estimators #3305
- Replaced usage of private method with Woodwork's public
get_subset_schema
method #3325
Fixes
Changes
- Added an
is_cv
property to the datasplitters used #3297 - Changed SimpleImputer to ignore Natural Language columns #3324
- Added drop NaN component to some time series pipelines #3310
Documentation Changes
- Update README.md with Alteryx link (#3319)
- Added formatting to the AutoML user guide to shorten result outputs #3328
Testing Changes
- Add auto approve dependency workflow schedule for every 30 mins #3312
v0.44.0
v0.44.0 Feb. 4, 2022
Enhancements
- Updated
DefaultAlgorithm
to also limit estimator usage for long-running multiclass problems #3099 - Added
make_pipeline_from_data_check_output()
utility method #3277 - Added more specific data check errors to
DatetimeFormatDataCheck
#3288
Fixes
- Updated the binary classification pipeline's
optimize_thresholds
method to use Nelder-Mead #3280 - Fixed bug where feature importance on time series pipelines only showed 0 for time index #3285
Changes
- Removed
DateTimeNaNDataCheck
andNaturalLanguageNaNDataCheck
in favor ofNullDataCheck
#3260 - Drop support for Python 3.7 #3291
- Updated minimum version of
woodwork
tov0.12.0
#3290
Documentation Changes
- Update documentation and docstring for
validate_holdout_datasets
for time series problems #3278 - Fixed mistake in documentation where wrong objective was used for calculating percent-better-than-baseline #3285
Testing Changes
Breaking Changes
v0.43.0
v0.43.0 Jan. 25, 2022
Enhancements
- Updated new
NullDataCheck
to return a warning and suggest an action to impute columns with null values #3197 - Updated
make_pipeline_from_actions
to handle null column imputation #3237 - Updated data check actions API to return options instead of actions and add functionality to suggest and take action on columns with null values #3182
Fixes
- Fixed categorical data leaking into non-categorical sub-pipelines in
DefaultAlgorithm
#3209 - Fixed Python 3.9 installation for prophet by updating
pmdarima
version in requirements #3268 - Allowed DateTime columns to pass through PerColumnImputer without breaking #3267
Changes
- Updated
DataCheck
validate()
output to return a dictionary instead of list for actions #3142 - Updated
DataCheck
validate()
API to use the newDataCheckActionOption
class instead ofDataCheckAction
#3152 - Uncapped numba version and removed it from requirements #3263
- Renamed
HighlyNullDataCheck
toNullDataCheck
#3197 - Updated data check
validate()
output to return a list of warnings and errors instead of a dictionary #3244 - Capped
pandas
at < 1.4.0 #3274
Testing Changes
- Bumped minimum
IPython
version to 7.16.3 intest-requirements.txt
based on dependabot feedback #3269
Breaking Changes
- Renamed
HighlyNullDataCheck
toNullDataCheck
#3197 - Updated data check
validate()
output to return a list of warnings and errors instead of a dictionary. See the Data Check or Data Check Actions pages (under User Guide) for examples. #3244 - Removed
impute_all
anddefault_impute_strategy
parameters from thePerColumnImputer
#3267 - Updated
PerColumnImputer
such that columns not specified inimpute_strategies
dict will not be imputed anymore #3267
v0.42.0
v0.42.0 Jan. 20, 2022
Enhancements
- Required the separation of training and test data by
gap
+ 1 units to be verified bytime_index
for time series problems #3208 - Added support for boolean features for
ARIMARegressor
#3187 - Updated dependency bot workflow to remove outdated description and add new configuration to delete branches automatically #3212
- Added
n_obs
andn_splits
toTimeSeriesParametersDataCheck
error details #3246
Fixes
- Fixed classification pipelines to only accept target data with the appropriate number of classes #3185
- Added support for time series in
DefaultAlgorithm
#3177 - Standardized names of featurization components #3192
- Removed empty cell in text_input.ipynb #3234
- Removed potential prediction explanations failure when pipelines predicted a class with probability 1 #3221
- Dropped NaNs before partial dependence grid generation #3235
- Allowed prediction explanations to be json-serializable #3262
- Fixed bug where
InvalidTargetDataCheck
would not check time series regression targets #3251 - Fixed bug in
are_datasets_separated_by_gap_time_index
#3256
Changes
- Raised lowest compatible numpy version to 1.21.0 to address security concerns #3207
- Changed the default objective to
MedianAE
fromR2
for time series regression #3205 - Removed all-nan Unknown to Double logical conversion in
infer_feature_types
#3196 - Checking the validity of holdout data for time series problems can be performed by calling
pipelines.utils.validate_holdout_datasets
prior to callingpredict
#3208
Documentation Changes
Testing Changes
Breaking Changes
- Renamed
DateTime Featurizer Component
toDateTime Featurizer
andNatural Language Featurization Component
toNatural Language Featurizer
#3192
v0.41.0
v0.41.0 Jan. 10, 2022
Enhancements
- Added string support for DataCheckActionCode #3167
- Added
DataCheckActionOption
class #3134 - Add issue templates for bugs, feature requests and documentation improvements for GitHub #3199
Fixes
- Fix bug where prediction explanations
class_name
was shown as float for boolean targets #3179 - Fixed bug in nightly linux tests #3189
Changes
- Removed usage of scikit-learn's
LabelEncoder
in favor of ours #3161 - Removed nullable types checking from
infer_feature_types
#3156 - Fixed
mean_cv_data
andvalidation_score
values in AutoMLSearch.rankings to reflect cv score orNaN
when appropriate #3162
Documentation Changes
Testing Changes
- Add workflow to auto-merge dependency PRs if status checks pass #3184
v0.40.0
v0.40.0 Dec. 22, 2021
❄️ ☃️ Happy holidays! ☃️ ❄️
Enhancements
- Added
TimeSeriesSplittingDataCheck
toDefaultDataChecks
to verify adequate class representation in time series classification problems #3141 - Added the ability to accept serialized features and skip computation in
DFSTransformer
#3106 - Added support for known-in-advance features #3149
Fixes
- Fixed error caused when tuning threshold for time series binary classification #3140
Changes
TimeSeriesParametersDataCheck
was added toDefaultDataChecks
for time series problems #3139- Renamed
date_index
totime_index
inproblem_configuration
for time series problems #3137 - Updated
nlp-primitives
minimum version to 2.1.0 #3166 - Updated minimum version of
woodwork
to v0.11.0 #3171
Documentation Changes
- Added comments to provide clarity on doctests #3155
Testing Changes
- Parameterized tests in
test_datasets.py
#3145