-
Notifications
You must be signed in to change notification settings - Fork 0
/
CircularHough_Grd.m
646 lines (578 loc) · 24.3 KB
/
CircularHough_Grd.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
function [accum, varargout] = CircularHough_Grd(img, radrange, varargin)
%Detect circular shapes in a grayscale image. Resolve their center
%positions and radii.
%
% [accum, circen, cirrad, dbg_LMmask] = CircularHough_Grd(
% img, radrange, grdthres, fltr4LM_R, multirad, fltr4accum)
% Circular Hough transform based on the gradient field of an image.
% NOTE: Operates on grayscale images, NOT B/W bitmaps.
% NO loops in the implementation of Circular Hough transform,
% which means faster operation but at the same time larger
% memory consumption.
%
%%%%%%%% INPUT: (img, radrange, grdthres, fltr4LM_R, multirad, fltr4accum)
%
% img: A 2-D grayscale image (NO B/W bitmap)
%
% radrange: The possible minimum and maximum radii of the circles
% to be searched, in the format of
% [minimum_radius , maximum_radius] (unit: pixels)
% **NOTE**: A smaller range saves computational time and
% memory.
%
% grdthres: (Optional, default is 10, must be non-negative)
% The algorithm is based on the gradient field of the
% input image. A thresholding on the gradient magnitude
% is performed before the voting process of the Circular
% Hough transform to remove the 'uniform intensity'
% (sort-of) image background from the voting process.
% In other words, pixels with gradient magnitudes smaller
% than 'grdthres' are NOT considered in the computation.
% **NOTE**: The default parameter value is chosen for
% images with a maximum intensity close to 255. For cases
% with dramatically different maximum intensities, e.g.
% 10-bit bitmaps in stead of the assumed 8-bit, the default
% value can NOT be used. A value of 4% to 10% of the maximum
% intensity may work for general cases.
%
% fltr4LM_R: (Optional, default is 8, minimum is 3)
% The radius of the filter used in the search of local
% maxima in the accumulation array. To detect circles whose
% shapes are less perfect, the radius of the filter needs
% to be set larger.
%
% multirad: (Optional, default is 0.5)
% In case of concentric circles, multiple radii may be
% detected corresponding to a single center position. This
% argument sets the tolerance of picking up the likely
% radii values. It ranges from 0.1 to 1, where 0.1
% corresponds to the largest tolerance, meaning more radii
% values will be detected, and 1 corresponds to the smallest
% tolerance, in which case only the "principal" radius will
% be picked up.
%
% fltr4accum: (Optional. A default filter will be used if not given)
% Filter used to smooth the accumulation array. Depending
% on the image and the parameter settings, the accumulation
% array built has different noise level and noise pattern
% (e.g. noise frequencies). The filter should be set to an
% appropriately size such that it's able to suppress the
% dominant noise frequency.
%
%%%%%%%% OUTPUT: [accum, circen, cirrad, dbg_LMmask]
%
% accum: The result accumulation array from the Circular Hough
% transform. The accumulation array has the same dimension
% as the input image.
%
% circen: (Optional)
% Center positions of the circles detected. Is a N-by-2
% matrix with each row contains the (x, y) positions
% of a circle. For concentric circles (with the same center
% position), say k of them, the same center position will
% appear k times in the matrix.
%
% cirrad: (Optional)
% Estimated radii of the circles detected. Is a N-by-1
% column vector with a one-to-one correspondance to the
% output 'circen'. A value 0 for the radius indicates a
% failed detection of the circle's radius.
%
% dbg_LMmask: (Optional, for debugging purpose)
% Mask from the search of local maxima in the accumulation
% array.
%
%%%%%%%%% EXAMPLE #0:
% rawimg = imread('TestImg_CHT_a2.bmp');
% tic;
% [accum, circen, cirrad] = CircularHough_Grd(rawimg, [15 60]);
% toc;
% figure(1); imagesc(accum); axis image;
% title('Accumulation Array from Circular Hough Transform');
% figure(2); imagesc(rawimg); colormap('gray'); axis image;
% hold on;
% plot(circen(:,1), circen(:,2), 'r+');
% for k = 1 : size(circen, 1),
% DrawCircle(circen(k,1), circen(k,2), cirrad(k), 32, 'b-');
% end
% hold off;
% title(['Raw Image with Circles Detected ', ...
% '(center positions and radii marked)']);
% figure(3); surf(accum, 'EdgeColor', 'none'); axis ij;
% title('3-D View of the Accumulation Array');
%
% COMMENTS ON EXAMPLE #0:
% Kind of an easy case to handle. To detect circles in the image whose
% radii range from 15 to 60. Default values for arguments 'grdthres',
% 'fltr4LM_R', 'multirad' and 'fltr4accum' are used.
%
%%%%%%%%% EXAMPLE #1:
% rawimg = imread('TestImg_CHT_a3.bmp');
% tic;
% [accum, circen, cirrad] = CircularHough_Grd(rawimg, [15 60], 10, 20);
% toc;
% figure(1); imagesc(accum); axis image;
% title('Accumulation Array from Circular Hough Transform');
% figure(2); imagesc(rawimg); colormap('gray'); axis image;
% hold on;
% plot(circen(:,1), circen(:,2), 'r+');
% for k = 1 : size(circen, 1),
% DrawCircle(circen(k,1), circen(k,2), cirrad(k), 32, 'b-');
% end
% hold off;
% title(['Raw Image with Circles Detected ', ...
% '(center positions and radii marked)']);
% figure(3); surf(accum, 'EdgeColor', 'none'); axis ij;
% title('3-D View of the Accumulation Array');
%
% COMMENTS ON EXAMPLE #1:
% The shapes in the raw image are not very good circles. As a result,
% the profile of the peaks in the accumulation array are kind of
% 'stumpy', which can be seen clearly from the 3-D view of the
% accumulation array. (As a comparison, please see the sharp peaks in
% the accumulation array in example #0) To extract the peak positions
% nicely, a value of 20 (default is 8) is used for argument 'fltr4LM_R',
% which is the radius of the filter used in the search of peaks.
%
%%%%%%%%% EXAMPLE #2:
% rawimg = imread('TestImg_CHT_b3.bmp');
% fltr4img = [1 1 1 1 1; 1 2 2 2 1; 1 2 4 2 1; 1 2 2 2 1; 1 1 1 1 1];
% fltr4img = fltr4img / sum(fltr4img(:));
% imgfltrd = filter2( fltr4img , rawimg );
% tic;
% [accum, circen, cirrad] = CircularHough_Grd(imgfltrd, [15 80], 8, 10);
% toc;
% figure(1); imagesc(accum); axis image;
% title('Accumulation Array from Circular Hough Transform');
% figure(2); imagesc(rawimg); colormap('gray'); axis image;
% hold on;
% plot(circen(:,1), circen(:,2), 'r+');
% for k = 1 : size(circen, 1),
% DrawCircle(circen(k,1), circen(k,2), cirrad(k), 32, 'b-');
% end
% hold off;
% title(['Raw Image with Circles Detected ', ...
% '(center positions and radii marked)']);
%
% COMMENTS ON EXAMPLE #2:
% The circles in the raw image have small scale irregularities along
% the edges, which could lead to an accumulation array that is bad for
% local maxima detection. A 5-by-5 filter is used to smooth out the
% small scale irregularities. A blurred image is actually good for the
% algorithm implemented here which is based on the image's gradient
% field.
%
%%%%%%%%% EXAMPLE #3:
% rawimg = imread('TestImg_CHT_c3.bmp');
% fltr4img = [1 1 1 1 1; 1 2 2 2 1; 1 2 4 2 1; 1 2 2 2 1; 1 1 1 1 1];
% fltr4img = fltr4img / sum(fltr4img(:));
% imgfltrd = filter2( fltr4img , rawimg );
% tic;
% [accum, circen, cirrad] = ...
% CircularHough_Grd(imgfltrd, [15 105], 8, 10, 0.7);
% toc;
% figure(1); imagesc(accum); axis image;
% figure(2); imagesc(rawimg); colormap('gray'); axis image;
% hold on;
% plot(circen(:,1), circen(:,2), 'r+');
% for k = 1 : size(circen, 1),
% DrawCircle(circen(k,1), circen(k,2), cirrad(k), 32, 'b-');
% end
% hold off;
% title(['Raw Image with Circles Detected ', ...
% '(center positions and radii marked)']);
%
% COMMENTS ON EXAMPLE #3:
% Similar to example #2, a filtering before circle detection works for
% noisy image too. 'multirad' is set to 0.7 to eliminate the false
% detections of the circles' radii.
%
%%%%%%%%% BUG REPORT:
% This is a beta version. Please send your bug reports, comments and
% suggestions to pengtao@glue.umd.edu . Thanks.
%
%
%%%%%%%%% INTERNAL PARAMETERS:
% The INPUT arguments are just part of the parameters that are used by
% the circle detection algorithm implemented here. Variables in the code
% with a prefix 'prm_' in the name are the parameters that control the
% judging criteria and the behavior of the algorithm. Default values for
% these parameters can hardly work for all circumstances. Therefore, at
% occasions, the values of these INTERNAL PARAMETERS (parameters that
% are NOT exposed as input arguments) need to be fine-tuned to make
% the circle detection work as expected.
% The following example shows how changing an internal parameter could
% influence the detection result.
% 1. Change the value of the internal parameter 'prm_LM_LoBndRa' to 0.4
% (default is 0.2)
% 2. Run the following matlab code:
% fltr4accum = [1 2 1; 2 6 2; 1 2 1];
% fltr4accum = fltr4accum / sum(fltr4accum(:));
% rawimg = imread('Frame_0_0022_portion.jpg');
% tic;
% [accum, circen] = CircularHough_Grd(rawimg, ...
% [4 14], 10, 4, 0.5, fltr4accum);
% toc;
% figure(1); imagesc(accum); axis image;
% title('Accumulation Array from Circular Hough Transform');
% figure(2); imagesc(rawimg); colormap('gray'); axis image;
% hold on; plot(circen(:,1), circen(:,2), 'r+'); hold off;
% title('Raw Image with Circles Detected (center positions marked)');
% 3. See how different values of the parameter 'prm_LM_LoBndRa' could
% influence the result.
% Author: Tao Peng
% Department of Mechanical Engineering
% University of Maryland, College Park, Maryland 20742, USA
% pengtao@glue.umd.edu
% Version: Beta Revision: Mar. 07, 2007
%%%%%%%% Arguments and parameters %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Validation of arguments
if ndims(img) ~= 2 || ~isnumeric(img),
error('CircularHough_Grd: ''img'' has to be 2 dimensional');
end
if ~all(size(img) >= 32),
error('CircularHough_Grd: ''img'' has to be larger than 32-by-32');
end
if numel(radrange) ~= 2 || ~isnumeric(radrange),
error(['CircularHough_Grd: ''radrange'' has to be ', ...
'a two-element vector']);
end
prm_r_range = sort(max( [0,0;radrange(1),radrange(2)] ));
% Parameters (default values)
prm_grdthres = 10;
prm_fltrLM_R = 8;
prm_multirad = 0.5;
func_compu_cen = true;
func_compu_radii = true;
% Validation of arguments
vap_grdthres = 1;
if nargin > (1 + vap_grdthres),
if isnumeric(varargin{vap_grdthres}) && ...
varargin{vap_grdthres}(1) >= 0,
prm_grdthres = varargin{vap_grdthres}(1);
else
error(['CircularHough_Grd: ''grdthres'' has to be ', ...
'a non-negative number']);
end
end
vap_fltr4LM = 2; % filter for the search of local maxima
if nargin > (1 + vap_fltr4LM),
if isnumeric(varargin{vap_fltr4LM}) && varargin{vap_fltr4LM}(1) >= 3,
prm_fltrLM_R = varargin{vap_fltr4LM}(1);
else
error(['CircularHough_Grd: ''fltr4LM_R'' has to be ', ...
'larger than or equal to 3']);
end
end
vap_multirad = 3;
if nargin > (1 + vap_multirad),
if isnumeric(varargin{vap_multirad}) && ...
varargin{vap_multirad}(1) >= 0.1 && ...
varargin{vap_multirad}(1) <= 1,
prm_multirad = varargin{vap_multirad}(1);
else
error(['CircularHough_Grd: ''multirad'' has to be ', ...
'within the range [0.1, 1]']);
end
end
vap_fltr4accum = 4; % filter for smoothing the accumulation array
if nargin > (1 + vap_fltr4accum),
if isnumeric(varargin{vap_fltr4accum}) && ...
ndims(varargin{vap_fltr4accum}) == 2 && ...
all(size(varargin{vap_fltr4accum}) >= 3),
fltr4accum = varargin{vap_fltr4accum};
else
error(['CircularHough_Grd: ''fltr4accum'' has to be ', ...
'a 2-D matrix with a minimum size of 3-by-3']);
end
else
% Default filter (5-by-5)
fltr4accum = ones(5,5);
fltr4accum(2:4,2:4) = 2;
fltr4accum(3,3) = 6;
end
func_compu_cen = ( nargout > 1 );
func_compu_radii = ( nargout > 2 );
% Reserved parameters
dbg_on = false; % debug information
dbg_bfigno = 4;
if nargout > 3, dbg_on = true; end
%%%%%%%% Building accumulation array %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Convert the image to single if it is not of
% class float (single or double)
img_is_double = isa(img, 'double');
if ~(img_is_double || isa(img, 'single')),
imgf = single(img);
end
% Compute the gradient and the magnitude of gradient
if img_is_double,
[grdx, grdy] = gradient(img);
else
[grdx, grdy] = gradient(imgf);
end
grdmag = sqrt(grdx.^2 + grdy.^2);
% Get the linear indices, as well as the subscripts, of the pixels
% whose gradient magnitudes are larger than the given threshold
grdmasklin = find(grdmag > prm_grdthres);
[grdmask_IdxI, grdmask_IdxJ] = ind2sub(size(grdmag), grdmasklin);
% Compute the linear indices (as well as the subscripts) of
% all the votings to the accumulation array.
% The Matlab function 'accumarray' accepts only double variable,
% so all indices are forced into double at this point.
% A row in matrix 'lin2accum_aJ' contains the J indices (into the
% accumulation array) of all the votings that are introduced by a
% same pixel in the image. Similarly with matrix 'lin2accum_aI'.
rr_4linaccum = double( prm_r_range );
linaccum_dr = [ (-rr_4linaccum(2) + 0.5) : -rr_4linaccum(1) , ...
(rr_4linaccum(1) + 0.5) : rr_4linaccum(2) ];
lin2accum_aJ = floor( ...
double(grdx(grdmasklin)./grdmag(grdmasklin)) * linaccum_dr + ...
repmat( double(grdmask_IdxJ)+0.5 , [1,length(linaccum_dr)] ) ...
);
lin2accum_aI = floor( ...
double(grdy(grdmasklin)./grdmag(grdmasklin)) * linaccum_dr + ...
repmat( double(grdmask_IdxI)+0.5 , [1,length(linaccum_dr)] ) ...
);
% Clip the votings that are out of the accumulation array
mask_valid_aJaI = ...
lin2accum_aJ > 0 & lin2accum_aJ < (size(grdmag,2) + 1) & ...
lin2accum_aI > 0 & lin2accum_aI < (size(grdmag,1) + 1);
mask_valid_aJaI_reverse = ~ mask_valid_aJaI;
lin2accum_aJ = lin2accum_aJ .* mask_valid_aJaI + mask_valid_aJaI_reverse;
lin2accum_aI = lin2accum_aI .* mask_valid_aJaI + mask_valid_aJaI_reverse;
clear mask_valid_aJaI_reverse;
% Linear indices (of the votings) into the accumulation array
lin2accum = sub2ind( size(grdmag), lin2accum_aI, lin2accum_aJ );
lin2accum_size = size( lin2accum );
lin2accum = reshape( lin2accum, [numel(lin2accum),1] );
clear lin2accum_aI lin2accum_aJ;
% Weights of the votings, currently using the gradient maginitudes
% but in fact any scheme can be used (application dependent)
weight4accum = ...
repmat( double(grdmag(grdmasklin)) , [lin2accum_size(2),1] ) .* ...
mask_valid_aJaI(:);
clear mask_valid_aJaI;
% Build the accumulation array using Matlab function 'accumarray'
accum = accumarray( lin2accum , weight4accum );
accum = [ accum ; zeros( numel(grdmag) - numel(accum) , 1 ) ];
accum = reshape( accum, size(grdmag) );
%%%%%%%% Locating local maxima in the accumulation array %%%%%%%%%%%%
% Stop if no need to locate the center positions of circles
if ~func_compu_cen,
return;
end
clear lin2accum weight4accum;
% Parameters to locate the local maxima in the accumulation array
% -- Segmentation of 'accum' before locating LM
prm_useaoi = true;
prm_aoithres_s = 2;
prm_aoiminsize = floor(min([ min(size(accum)) * 0.25, ...
prm_r_range(2) * 1.5 ]));
% -- Filter for searching for local maxima
prm_fltrLM_s = 1.35;
prm_fltrLM_r = ceil( prm_fltrLM_R * 0.6 );
prm_fltrLM_npix = max([ 6, ceil((prm_fltrLM_R/2)^1.8) ]);
% -- Lower bound of the intensity of local maxima
prm_LM_LoBndRa = 0.2; % minimum ratio of LM to the max of 'accum'
% Smooth the accumulation array
fltr4accum = fltr4accum / sum(fltr4accum(:));
accum = filter2( fltr4accum, accum );
% Select a number of Areas-Of-Interest from the accumulation array
if prm_useaoi,
% Threshold value for 'accum'
prm_llm_thres1 = prm_grdthres * prm_aoithres_s;
% Thresholding over the accumulation array
accummask = ( accum > prm_llm_thres1 );
% Segmentation over the mask
[accumlabel, accum_nRgn] = bwlabel( accummask, 8 );
% Select AOIs from segmented regions
accumAOI = ones(0,4);
for k = 1 : accum_nRgn,
accumrgn_lin = find( accumlabel == k );
[accumrgn_IdxI, accumrgn_IdxJ] = ...
ind2sub( size(accumlabel), accumrgn_lin );
rgn_top = min( accumrgn_IdxI );
rgn_bottom = max( accumrgn_IdxI );
rgn_left = min( accumrgn_IdxJ );
rgn_right = max( accumrgn_IdxJ );
% The AOIs selected must satisfy a minimum size
if ( (rgn_right - rgn_left + 1) >= prm_aoiminsize && ...
(rgn_bottom - rgn_top + 1) >= prm_aoiminsize ),
accumAOI = [ accumAOI; ...
rgn_top, rgn_bottom, rgn_left, rgn_right ];
end
end
else
% Whole accumulation array as the one AOI
accumAOI = [1, size(accum,1), 1, size(accum,2)];
end
% Thresholding of 'accum' by a lower bound
prm_LM_LoBnd = max(accum(:)) * prm_LM_LoBndRa;
% Build the filter for searching for local maxima
fltr4LM = zeros(2 * prm_fltrLM_R + 1);
[mesh4fLM_x, mesh4fLM_y] = meshgrid(-prm_fltrLM_R : prm_fltrLM_R);
mesh4fLM_r = sqrt( mesh4fLM_x.^2 + mesh4fLM_y.^2 );
fltr4LM_mask = ...
( mesh4fLM_r > prm_fltrLM_r & mesh4fLM_r <= prm_fltrLM_R );
fltr4LM = fltr4LM - ...
fltr4LM_mask * (prm_fltrLM_s / sum(fltr4LM_mask(:)));
if prm_fltrLM_R >= 4,
fltr4LM_mask = ( mesh4fLM_r < (prm_fltrLM_r - 1) );
else
fltr4LM_mask = ( mesh4fLM_r < prm_fltrLM_r );
end
fltr4LM = fltr4LM + fltr4LM_mask / sum(fltr4LM_mask(:));
% **** Debug code (begin)
if dbg_on,
dbg_LMmask = zeros(size(accum));
end
% **** Debug code (end)
% For each of the AOIs selected, locate the local maxima
circen = zeros(0,2);
for k = 1 : size(accumAOI, 1),
aoi = accumAOI(k,:); % just for referencing convenience
% Thresholding of 'accum' by a lower bound
accumaoi_LBMask = ...
( accum(aoi(1):aoi(2), aoi(3):aoi(4)) > prm_LM_LoBnd );
% Apply the local maxima filter
candLM = conv2( accum(aoi(1):aoi(2), aoi(3):aoi(4)) , ...
fltr4LM , 'same' );
candLM_mask = ( candLM > 0 );
% Clear the margins of 'candLM_mask'
candLM_mask([1:prm_fltrLM_R, (end-prm_fltrLM_R+1):end], :) = 0;
candLM_mask(:, [1:prm_fltrLM_R, (end-prm_fltrLM_R+1):end]) = 0;
% **** Debug code (begin)
if dbg_on,
dbg_LMmask(aoi(1):aoi(2), aoi(3):aoi(4)) = ...
dbg_LMmask(aoi(1):aoi(2), aoi(3):aoi(4)) + ...
accumaoi_LBMask + 2 * candLM_mask;
end
% **** Debug code (end)
% Group the local maxima candidates by adjacency, compute the
% centroid position for each group and take that as the center
% of one circle detected
[candLM_label, candLM_nRgn] = bwlabel( candLM_mask, 8 );
for ilabel = 1 : candLM_nRgn,
% Indices (to current AOI) of the pixels in the group
candgrp_masklin = find( candLM_label == ilabel );
[candgrp_IdxI, candgrp_IdxJ] = ...
ind2sub( size(candLM_label) , candgrp_masklin );
% Indices (to 'accum') of the pixels in the group
candgrp_IdxI = candgrp_IdxI + ( aoi(1) - 1 );
candgrp_IdxJ = candgrp_IdxJ + ( aoi(3) - 1 );
candgrp_idx2acm = ...
sub2ind( size(accum) , candgrp_IdxI , candgrp_IdxJ );
% Minimum number of qulified pixels in the group
if sum(accumaoi_LBMask(candgrp_masklin)) < prm_fltrLM_npix,
continue;
end
% Compute the centroid position
candgrp_acmsum = sum( accum(candgrp_idx2acm) );
cc_x = sum( candgrp_IdxJ .* accum(candgrp_idx2acm) ) / ...
candgrp_acmsum;
cc_y = sum( candgrp_IdxI .* accum(candgrp_idx2acm) ) / ...
candgrp_acmsum;
circen = [circen; cc_x, cc_y];
end
end
% **** Debug code (begin)
if dbg_on,
figure(dbg_bfigno); imagesc(dbg_LMmask); axis image;
title('Generated map of local maxima');
if size(accumAOI, 1) == 1,
figure(dbg_bfigno+1);
surf(candLM, 'EdgeColor', 'none'); axis ij;
title('Accumulation array after local maximum filtering');
end
end
% **** Debug code (end)
%%%%%%%% Estimation of the Radii of Circles %%%%%%%%%%%%
% Stop if no need to estimate the radii of circles
if ~func_compu_radii,
varargout{1} = circen;
return;
end
% Parameters for the estimation of the radii of circles
fltr4SgnCv = [2 1 1];
fltr4SgnCv = fltr4SgnCv / sum(fltr4SgnCv);
% Find circle's radius using its signature curve
cirrad = zeros( size(circen,1), 1 );
for k = 1 : size(circen,1),
% Neighborhood region of the circle for building the sgn. curve
circen_round = round( circen(k,:) );
SCvR_I0 = circen_round(2) - prm_r_range(2) - 1;
if SCvR_I0 < 1,
SCvR_I0 = 1;
end
SCvR_I1 = circen_round(2) + prm_r_range(2) + 1;
if SCvR_I1 > size(grdx,1),
SCvR_I1 = size(grdx,1);
end
SCvR_J0 = circen_round(1) - prm_r_range(2) - 1;
if SCvR_J0 < 1,
SCvR_J0 = 1;
end
SCvR_J1 = circen_round(1) + prm_r_range(2) + 1;
if SCvR_J1 > size(grdx,2),
SCvR_J1 = size(grdx,2);
end
% Build the sgn. curve
SgnCvMat_dx = repmat( (SCvR_J0:SCvR_J1) - circen(k,1) , ...
[SCvR_I1 - SCvR_I0 + 1 , 1] );
SgnCvMat_dy = repmat( (SCvR_I0:SCvR_I1)' - circen(k,2) , ...
[1 , SCvR_J1 - SCvR_J0 + 1] );
SgnCvMat_r = sqrt( SgnCvMat_dx .^2 + SgnCvMat_dy .^2 );
SgnCvMat_rp1 = round(SgnCvMat_r) + 1;
f4SgnCv = abs( ...
double(grdx(SCvR_I0:SCvR_I1, SCvR_J0:SCvR_J1)) .* SgnCvMat_dx + ...
double(grdy(SCvR_I0:SCvR_I1, SCvR_J0:SCvR_J1)) .* SgnCvMat_dy ...
) ./ SgnCvMat_r;
SgnCv = accumarray( SgnCvMat_rp1(:) , f4SgnCv(:) );
SgnCv_Cnt = accumarray( SgnCvMat_rp1(:) , ones(numel(f4SgnCv),1) );
SgnCv_Cnt = SgnCv_Cnt + (SgnCv_Cnt == 0);
SgnCv = SgnCv ./ SgnCv_Cnt;
% Suppress the undesired entries in the sgn. curve
% -- Radii that correspond to short arcs
SgnCv = SgnCv .* ( SgnCv_Cnt >= (pi/4 * [0:(numel(SgnCv_Cnt)-1)]') );
% -- Radii that are out of the given range
SgnCv( 1 : (round(prm_r_range(1))+1) ) = 0;
SgnCv( (round(prm_r_range(2))+1) : end ) = 0;
% Get rid of the zero radius entry in the array
SgnCv = SgnCv(2:end);
% Smooth the sgn. curve
SgnCv = filtfilt( fltr4SgnCv , [1] , SgnCv );
% Get the maximum value in the sgn. curve
SgnCv_max = max(SgnCv);
if SgnCv_max <= 0,
cirrad(k) = 0;
continue;
end
% Find the local maxima in sgn. curve by 1st order derivatives
% -- Mark the ascending edges in the sgn. curve as 1s and
% -- descending edges as 0s
SgnCv_AscEdg = ( SgnCv(2:end) - SgnCv(1:(end-1)) ) > 0;
% -- Mark the transition (ascending to descending) regions
SgnCv_LMmask = [ 0; 0; SgnCv_AscEdg(1:(end-2)) ] & (~SgnCv_AscEdg);
SgnCv_LMmask = SgnCv_LMmask & [ SgnCv_LMmask(2:end) ; 0 ];
% Incorporate the minimum value requirement
SgnCv_LMmask = SgnCv_LMmask & ...
( SgnCv(1:(end-1)) >= (prm_multirad * SgnCv_max) );
% Get the positions of the peaks
SgnCv_LMPos = sort( find(SgnCv_LMmask) );
% Save the detected radii
if isempty(SgnCv_LMPos),
cirrad(k) = 0;
else
cirrad(k) = SgnCv_LMPos(end);
for i_radii = (length(SgnCv_LMPos) - 1) : -1 : 1,
circen = [ circen; circen(k,:) ];
cirrad = [ cirrad; SgnCv_LMPos(i_radii) ];
end
end
end
% Output
varargout{1} = circen;
varargout{2} = cirrad;
if nargout > 3,
varargout{3} = dbg_LMmask;
end