-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpacker.py
92 lines (75 loc) · 2.83 KB
/
packer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
from PIL import Image
import os
import glob
import ntpath
import sys
import numpy as np
# Bake sbsar into better channels
# Currently using this for UE4 terrain packing
SBSRENDER = '"C:\Program Files\Allegorithmic\Substance Automation Toolkit\sbsrender.exe"'
out_folder = "temp_channel_packer_output"
# true image size = 2**image_size
# for example image size = 11 => 2**11 => dimensions = (2048, 2048)
image_size = 10
try:
print("Creating folder:", out_folder)
os.mkdir(out_folder)
except FileExistsError:
print("Folder already exists:", out_folder)
print("Number of arguments:", len(sys.argv), "arguments.")
arglist = sys.argv[1:]
print("Argument List:", str(arglist))
if len(arglist) == 0:
print("No arguments given, exit.")
exit(1)
# Can batch process multiple files
for arg in arglist:
SBSAR_NAME = ntpath.basename(arg)
print("Name:", SBSAR_NAME)
name_base = SBSAR_NAME.split(".")[0]
print("Base:", name_base)
command = f"""
{SBSRENDER} render
--inputs {SBSAR_NAME}
--input-graph-output basecolor
--input-graph-output normal
--input-graph-output roughness
--input-graph-output height
--input-graph-output ambientocclusion
--set-value $outputsize@{image_size},{image_size}
--output-name {{inputName}}_{{outputNodeName}}
--output-path {out_folder}
"""
command = " ".join(command.split())
print("Working directory:", os.getcwd())
print("Running:", command)
os.system(command)
images = {}
for infile in glob.glob(f"{out_folder}/*.png"):
file, ext = os.path.splitext(infile)
if name_base in file and "sbsar" not in file and ext == ".png":
print("Opening:", file)
channel = file.split("_")[-1]
images[channel] = Image.open(infile)
print("Channels:", images.keys())
# Color(RGB), Roughness(A)
# Normal(RGB), Height(A)
R, G, B = images["basecolor"].split()[:3]
Rg = images["roughness"].split()[-1]
img0 = Image.merge("RGBA", [R, G, B, Rg])
print("Image_color data:", img0.format, img0.mode)
img0.save(out_folder + "\\" + SBSAR_NAME + "_color.png", "PNG")
# if "ambientocclusion" in images:
# Ao = images["ambientocclusion"].split()[-1].convert("L")
# else:
# Ao = Image.new("L", R.size, color=255)
R, G, B = images["normal"].split()[:3]
# PIL doesn't understand howto properly convert from 16-bit grayscale to 8-bit
# Se let's do it manually then...
Hg_n = np.asarray(images["height"])
print("Height min/max:", np.min(Hg_n), np.max(Hg_n))
Hg = Image.fromarray(Hg_n // 256).convert("L")
# Hg.save(out_folder + "\\" + "hg_test.png", "PNG")
img1 = Image.merge("RGBA", [R, G, B, Hg])
print("Image_normal data:", img1.format, img1.mode)
img1.save(out_folder + "\\" + SBSAR_NAME + "_normal.png", "PNG")