-
Notifications
You must be signed in to change notification settings - Fork 0
/
main_test_usrnet.py
226 lines (182 loc) · 9.07 KB
/
main_test_usrnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import os.path
import cv2
import logging
import time
import os
import numpy as np
from datetime import datetime
from collections import OrderedDict
from scipy.io import loadmat
#import hdf5storage
from scipy import ndimage
from scipy.signal import convolve2d
import torch
from utils import utils_deblur
from utils import utils_logger
from utils import utils_sisr as sr
from utils import utils_image as util
from models.network_usrnet import USRNet as net
'''
Spyder (Python 3.6)
PyTorch 1.4.0
Windows 10 or Linux
Kai Zhang (cskaizhang@gmail.com)
github: https://github.com/cszn/USRNet
https://github.com/cszn/KAIR
If you have any question, please feel free to contact with me.
Kai Zhang (e-mail: cskaizhang@gmail.com)
by Kai Zhang (12/March/2020)
'''
"""
# --------------------------------------------
testing code of USRNet for the Table 1 in the paper
@inproceedings{zhang2020deep,
title={Deep unfolding network for image super-resolution},
author={Zhang, Kai and Van Gool, Luc and Timofte, Radu},
booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
pages={0--0},
year={2020}
}
# --------------------------------------------
|--model_zoo # model_zoo
|--usrgan # model_name, optimized for perceptual quality
|--usrnet # model_name, optimized for PSNR
|--usrgan_tiny # model_name, tiny model optimized for perceptual quality
|--usrnet_tiny # model_name, tiny model optimized for PSNR
|--testsets # testsets
|--set5 # testset_name
|--set14
|--urban100
|--bsd100
|--srbsd68 # already cropped
|--results # results
|--srbsd68_usrnet # result_name = testset_name + '_' + model_name
|--srbsd68_usrgan
|--srbsd68_usrnet_tiny
|--srbsd68_usrgan_tiny
# --------------------------------------------
"""
def main():
# ----------------------------------------
# Preparation
# ----------------------------------------
model_name = 'usrnet' # 'usrgan' | 'usrnet' | 'usrgan_tiny' | 'usrnet_tiny'
testset_name = 'set5' # test set, 'set5' | 'srbsd68'
test_sf = [4] if 'gan' in model_name else [2, 3, 4] # scale factor, from {1,2,3,4}
show_img = False # default: False
save_L = True # save LR image
save_E = True # save estimated image
save_LEH = False # save zoomed LR, E and H images
# ----------------------------------------
# load testing kernels
# ----------------------------------------
# kernels = hdf5storage.loadmat(os.path.join('kernels', 'kernels.mat'))['kernels']
kernels = loadmat(os.path.join('kernels', 'kernels_12.mat'))['kernels']
n_channels = 1 if 'gray' in model_name else 3 # 3 for color image, 1 for grayscale image
model_pool = 'model_zoo' # fixed
testsets = 'testsets' # fixed
results = 'results' # fixed
noise_level_img = 0 # fixed: 0, noise level for LR image
noise_level_model = noise_level_img # fixed, noise level of model, default 0
result_name = testset_name + '_' + model_name
model_path = os.path.join(model_pool, model_name+'.pth')
# ----------------------------------------
# L_path = H_path, E_path, logger
# ----------------------------------------
L_path = os.path.join(testsets, testset_name) # L_path and H_path, fixed, for Low-quality images
E_path = os.path.join(results, result_name) # E_path, fixed, for Estimated images
util.mkdir(E_path)
logger_name = result_name
utils_logger.logger_info(logger_name, log_path=os.path.join(E_path, logger_name+'.log'))
logger = logging.getLogger(logger_name)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# ----------------------------------------
# load model
# ----------------------------------------
if 'tiny' in model_name:
model = net(n_iter=6, h_nc=32, in_nc=4, out_nc=3, nc=[16, 32, 64, 64],
nb=2, act_mode="R", downsample_mode='strideconv', upsample_mode="convtranspose")
else:
model = net(n_iter=8, h_nc=64, in_nc=4, out_nc=3, nc=[64, 128, 256, 512],
nb=2, act_mode="R", downsample_mode='strideconv', upsample_mode="convtranspose")
model.load_state_dict(torch.load(model_path), strict=True)
model.eval()
for key, v in model.named_parameters():
v.requires_grad = False
number_parameters = sum(map(lambda x: x.numel(), model.parameters()))
model = model.to(device)
logger.info('Model path: {:s}'.format(model_path))
logger.info('Params number: {}'.format(number_parameters))
logger.info('Model_name:{}, image sigma:{}'.format(model_name, noise_level_img))
logger.info(L_path)
L_paths = util.get_image_paths(L_path)
# --------------------------------
# read images
# --------------------------------
test_results_ave = OrderedDict()
test_results_ave['psnr_sf_k'] = []
for sf in test_sf:
for k_index in range(kernels.shape[1]):
test_results = OrderedDict()
test_results['psnr'] = []
kernel = kernels[0, k_index].astype(np.float64)
## other kernels
# kernel = utils_deblur.blurkernel_synthesis(h=25) # motion kernel
# kernel = utils_deblur.fspecial('gaussian', 25, 1.6) # Gaussian kernel
# kernel = sr.shift_pixel(kernel, sf) # pixel shift; optional
# kernel /= np.sum(kernel)
util.surf(kernel) if show_img else None
idx = 0
for img in L_paths:
# --------------------------------
# (1) classical degradation, img_L
# --------------------------------
idx += 1
img_name, ext = os.path.splitext(os.path.basename(img))
img_H = util.imread_uint(img, n_channels=n_channels) # HR image, int8
img_H = util.modcrop(img_H, np.lcm(sf,8)) # modcrop
# generate degraded LR image
img_L = ndimage.filters.convolve(img_H, kernel[..., np.newaxis], mode='wrap') # blur
img_L = sr.downsample_np(img_L, sf, center=False) # downsample, standard s-fold downsampler
img_L = util.uint2single(img_L) # uint2single
np.random.seed(seed=0) # for reproducibility
img_L += np.random.normal(0, noise_level_img, img_L.shape) # add AWGN
util.imshow(util.single2uint(img_L)) if show_img else None
x = util.single2tensor4(img_L)
k = util.single2tensor4(kernel[..., np.newaxis])
sigma = torch.tensor(noise_level_model).float().view([1, 1, 1, 1])
[x, k, sigma] = [el.to(device) for el in [x, k, sigma]]
# --------------------------------
# (2) inference
# --------------------------------
x = model(x, k, sf, sigma)
# --------------------------------
# (3) img_E
# --------------------------------
img_E = util.tensor2uint(x)
if save_E:
util.imsave(img_E, os.path.join(E_path, img_name+'_x'+str(sf)+'_k'+str(k_index+1)+'_'+model_name+'.png'))
# --------------------------------
# (4) img_LEH
# --------------------------------
img_L = util.single2uint(img_L)
if save_LEH:
k_v = kernel/np.max(kernel)*1.2
k_v = util.single2uint(np.tile(k_v[..., np.newaxis], [1, 1, 3]))
k_v = cv2.resize(k_v, (3*k_v.shape[1], 3*k_v.shape[0]), interpolation=cv2.INTER_NEAREST)
img_I = cv2.resize(img_L, (sf*img_L.shape[1], sf*img_L.shape[0]), interpolation=cv2.INTER_NEAREST)
img_I[:k_v.shape[0], -k_v.shape[1]:, :] = k_v
img_I[:img_L.shape[0], :img_L.shape[1], :] = img_L
util.imshow(np.concatenate([img_I, img_E, img_H], axis=1), title='LR / Recovered / Ground-truth') if show_img else None
util.imsave(np.concatenate([img_I, img_E, img_H], axis=1), os.path.join(E_path, img_name+'_x'+str(sf)+'_k'+str(k_index+1)+'_LEH.png'))
if save_L:
util.imsave(img_L, os.path.join(E_path, img_name+'_x'+str(sf)+'_k'+str(k_index+1)+'_LR.png'))
psnr = util.calculate_psnr(img_E, img_H, border=sf**2) # change with your own border
test_results['psnr'].append(psnr)
logger.info('{:->4d}--> {:>10s} -- x{:>2d} --k{:>2d} PSNR: {:.2f}dB'.format(idx, img_name+ext, sf, k_index, psnr))
ave_psnr_k = sum(test_results['psnr']) / len(test_results['psnr'])
logger.info('------> Average PSNR(RGB) of ({}) scale factor: ({}), kernel: ({}) sigma: ({}): {:.2f} dB'.format(testset_name, sf, k_index+1, noise_level_model, ave_psnr_k))
test_results_ave['psnr_sf_k'].append(ave_psnr_k)
logger.info(test_results_ave['psnr_sf_k'])
if __name__ == '__main__':
main()