-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathVarAutoEncoder.py
195 lines (156 loc) · 8.57 KB
/
VarAutoEncoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
from operator import xor
from Utils import *
from MyModels import *
from sklearn.model_selection import train_test_split
import numpy as np
from random import shuffle
from tensorflow.keras.utils import to_categorical
from tensorflow.keras.optimizers import SGD, Adam, RMSprop
from matplotlib import pyplot as plt
import tensorflow as tf
from tensorflow.keras import backend as K
n_classes = 7
classNames = ['CoV-2 (B)', 'CoV-2 (B.1.1.7)', 'CoV-2 (B.1.351)', 'CoV-2 (B.1.617.2)', 'CoV-2 (C.37)', 'CoV-2 (P.1)', 'Normal']
all_data_class1 = read_seq_new(r'D:\3. Imam University Research\COVID-19 RNA Analysis\Dataset\CovidVariantsDataset\SARS-CoV-2 (B)\ncbi_dataset\data\genomic.fna',0)
all_data_class2 = read_seq_new(r'D:\3. Imam University Research\COVID-19 RNA Analysis\Dataset\CovidVariantsDataset\SARS-CoV-2 (B.1.1.7)\ncbi_dataset\data\genomic.fna',1)
all_data_class3 = read_seq_new(r'D:\3. Imam University Research\COVID-19 RNA Analysis\Dataset\CovidVariantsDataset\SARS-CoV-2 (B.1.351)\ncbi_dataset\data\genomic.fna',2)
all_data_class4 = read_seq_new(r'D:\3. Imam University Research\COVID-19 RNA Analysis\Dataset\CovidVariantsDataset\SARS-CoV-2 (B.1.617.2)\ncbi_dataset\data\genomic.fna',3)
all_data_class5 = read_seq_new(r'D:\3. Imam University Research\COVID-19 RNA Analysis\Dataset\CovidVariantsDataset\SARS-CoV-2 (C.37)\ncbi_dataset\data\genomic.fna',4)
all_data_class6 = read_seq_new(r'D:\3. Imam University Research\COVID-19 RNA Analysis\Dataset\CovidVariantsDataset\SARS-CoV-2 (P.1)\ncbi_dataset\data\genomic.fna',5)
all_data=[]
for itm in all_data_class1:
all_data.append(itm)
for itm in all_data_class2:
all_data.append(itm)
for itm in all_data_class3:
all_data.append(itm)
for itm in all_data_class4:
all_data.append(itm)
for itm in all_data_class5:
all_data.append(itm)
for itm in all_data_class6:
all_data.append(itm)
shuffle(all_data)
x=[]
y=[]
for itm in all_data:
x.append(itm[0])
y.append(np.array(itm[1]))
x_train,x_test,y_train,y_test= train_test_split(x,y, test_size=0.01)
x_train=np.asarray(x_train,dtype=np.float)
x_test=np.asarray(x_test,dtype=np.float)
y_train=np.asarray(y_train)
y_test=np.asarray(y_test)
encoded = to_categorical([y_train])
y_train = np.squeeze(encoded)
encoded = to_categorical([y_test])
y_test = np.squeeze(encoded)
class Sampling(tf.keras.layers.Layer):
"""Uses (z_mean, z_log_var) to sample z, the vector encoding a digit."""
def call(self, inputs):
z_mean, z_log_var = inputs
batch = tf.shape(z_mean)[0]
dim = tf.shape(z_mean)[1]
epsilon = tf.keras.backend.random_normal(shape=(batch, dim))
return z_mean + tf.exp(0.5 * z_log_var) * epsilon
latent_dim = 350
encoder_inputs = tf.keras.layers.Input(shape=(12000,))
x = tf.keras.layers.Dense(9000, activation='relu')(encoder_inputs)
x = tf.keras.layers.Dense(6000, activation='relu')(x)
x = tf.keras.layers.Dense(3000, activation='relu')(x)
x = tf.keras.layers.Dense(1500, activation='relu')(x)
x = tf.keras.layers.Dense(700, activation='relu')(x)
z_mean = tf.keras.layers.Dense(latent_dim, name="z_mean")(x)
z_log_var = tf.keras.layers.Dense(latent_dim, name="z_log_var")(x)
z = Sampling()([z_mean, z_log_var])
encoder = tf.keras.Model(encoder_inputs, [z_mean, z_log_var, z], name="encoder")
encoder.summary()
latent_inputs = tf.keras.layers.Input(shape=(latent_dim,))
x = tf.keras.layers.Dense(700, activation='relu')(latent_inputs)
x = tf.keras.layers.Dense(1500, activation='relu')(x)
x = tf.keras.layers.Dense(3000, activation='relu')(x)
x = tf.keras.layers.Dense(6000, activation='relu')(x)
x = tf.keras.layers.Dense(9000, activation='relu')(x)
decoder_outputs = tf.keras.layers.Dense(12000, activation='relu')(x)
decoder = tf.keras.Model(latent_inputs, decoder_outputs, name="decoder")
decoder.summary()
# latent_dim = 300
# encoder_inputs = tf.keras.layers.Input(shape=(3000,4))
# x = tf.keras.layers.Conv1D(64,4,padding='same',activation='relu',kernel_initializer=tf.keras.initializers.RandomUniform())(encoder_inputs)
# x = tf.keras.layers.MaxPooling1D(2)(x)
# x = tf.keras.layers.Conv1D(128,4,padding='same',activation='relu',kernel_initializer=tf.keras.initializers.RandomUniform())(x)
# x = tf.keras.layers.MaxPooling1D(2)(x)
# x = tf.keras.layers.Conv1D(64,4,padding='same',activation='relu',kernel_initializer=tf.keras.initializers.RandomUniform())(x)
# x = tf.keras.layers.MaxPooling1D(2)(x)
# x = tf.keras.layers.Conv1D(32,4,padding='same',activation='relu',kernel_initializer=tf.keras.initializers.RandomUniform())(x)
# x = tf.keras.layers.Conv1D(16,4,padding='same',activation='relu',kernel_initializer=tf.keras.initializers.RandomUniform())(x)
# x = tf.keras.layers.Flatten()(x)
# z_mean = tf.keras.layers.Dense(latent_dim, name="z_mean")(x)
# z_log_var = tf.keras.layers.Dense(latent_dim, name="z_log_var")(x)
# z = Sampling()([z_mean, z_log_var])
# encoder = tf.keras.Model(encoder_inputs, [z_mean, z_log_var, z], name="encoder")
# encoder.summary()
# latent_inputs = tf.keras.layers.Input(shape=(latent_dim,))
# x = tf.keras.layers.Dense(latent_dim*4, activation='relu')(latent_inputs)
# x = tf.keras.layers.Dense(250*3*4, activation='relu')(x)
# x = tf.keras.layers.Reshape((250*3, 4))(x)
# x = tf.keras.layers.UpSampling1D(size=2)(x)
# x = tf.keras.layers.Conv1D(512,4,padding='same',activation='relu',kernel_initializer=tf.keras.initializers.RandomUniform())(x)
# x = tf.keras.layers.Conv1D(256,4,padding='same',activation='relu',kernel_initializer=tf.keras.initializers.RandomUniform())(x)
# x = tf.keras.layers.Conv1D(128,4,padding='same',activation='relu',kernel_initializer=tf.keras.initializers.RandomUniform())(x)
# x = tf.keras.layers.UpSampling1D(size=2)(x)
# x = tf.keras.layers.Conv1D(64,4,padding='same',activation='relu',kernel_initializer=tf.keras.initializers.RandomUniform())(x)
# x = tf.keras.layers.Conv1D(32,4,padding='same',activation='relu',kernel_initializer=tf.keras.initializers.RandomUniform())(x)
# x = tf.keras.layers.Conv1D(16,4,padding='same',activation='relu',kernel_initializer=tf.keras.initializers.RandomUniform())(x)
# decoder_outputs = tf.keras.layers.Conv1D(4,4,padding='same',activation='relu',kernel_initializer=tf.keras.initializers.RandomUniform())(x)
# decoder = tf.keras.Model(latent_inputs, decoder_outputs, name="decoder")
# decoder.summary()
class VAE(tf.keras.Model):
def __init__(self, encoder, decoder, **kwargs):
super(VAE, self).__init__(**kwargs)
self.encoder = encoder
self.decoder = decoder
self.total_loss_tracker = tf.keras.metrics.Mean(name="total_loss")
self.reconstruction_loss_tracker = tf.keras.metrics.Mean(
name="reconstruction_loss"
)
self.kl_loss_tracker = tf.keras.metrics.Mean(name="kl_loss")
@property
def metrics(self):
return [
self.total_loss_tracker,
self.reconstruction_loss_tracker,
self.kl_loss_tracker,
]
def train_step(self, data):
with tf.GradientTape() as tape:
z_mean, z_log_var, z = self.encoder(data)
reconstruction = self.decoder(z)
reconstruction_loss = tf.reduce_mean(
tf.reduce_sum(
tf.keras.losses.binary_crossentropy(data, reconstruction), axis=-1
)
)
kl_loss = -0.5 * (1 + z_log_var - tf.square(z_mean) - tf.exp(z_log_var))
kl_loss = tf.reduce_mean(tf.reduce_sum(kl_loss, axis=1))
total_loss = reconstruction_loss + kl_loss
grads = tape.gradient(total_loss, self.trainable_weights)
self.optimizer.apply_gradients(zip(grads, self.trainable_weights))
self.total_loss_tracker.update_state(total_loss)
self.reconstruction_loss_tracker.update_state(reconstruction_loss)
self.kl_loss_tracker.update_state(kl_loss)
return {
"loss": self.total_loss_tracker.result(),
"reconstruction_loss": self.reconstruction_loss_tracker.result(),
"kl_loss": self.kl_loss_tracker.result(),
}
print(x_train.shape)
x_train = x_train.reshape(-1,12000)
print(x_train.shape)
vae = VAE(encoder, decoder)
vae.compile(optimizer=tf.keras.optimizers.Adam())
vae.fit(x_train, epochs=100, batch_size=128)
noise = np.random.randn(100, latent_dim) * np.random.randn(100, latent_dim)
gen_seqs= vae.decoder.predict(noise)
vae.save(r'D:\3. Imam University Research\COVID-19 RNA Analysis\Code\COVID19-CNN-LSTM\COVID19VariantClassification\VAEseqGen',save_format='tf')
saveGeneratedSeq(gen_seqs.reshape(-1,3000,4))