-
Notifications
You must be signed in to change notification settings - Fork 38
/
train_mnist.py
executable file
·150 lines (129 loc) · 6.28 KB
/
train_mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
from __future__ import print_function
import argparse
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
import matplotlib.pyplot as plt
import numpy as np
from models import MNISTNet, MNISTFIG2Net
def train(args, model, criterion, device, train_loader, optimizer, epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
if args.vis:
output, _ = model(x=data, target=target)
else:
output = model(x=data, target=target)
loss = criterion(input=output, target=target)
optimizer.zero_grad()
# clip_grad_norm_(model.parameters(), max_norm=10)
loss.backward()
optimizer.step()
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
def test(args, model, criterion, device, test_loader):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
if args.vis:
output, _ = model(x=data)
else:
output = model(x=data)
test_loss += criterion(output, target).item()
pred = output.max(1, keepdim=True)[1]
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
def plot_2d_features(args, model, device, test_loader):
net_logits = np.zeros((10000, 2), dtype=np.float32)
net_labels = np.zeros((10000,), dtype=np.int32)
model.eval()
with torch.no_grad():
for b_idx, (data, target) in enumerate(test_loader):
data, target = data.to(device), target.to(device)
_, output2d = model(x=data)
output2d = output2d.cpu().data.numpy()
target = target.cpu().data.numpy()
net_logits[b_idx * args.test_batch_size: (b_idx + 1) * args.test_batch_size, :] = output2d
net_labels[b_idx * args.test_batch_size: (b_idx + 1) * args.test_batch_size] = target
for label in range(10):
idx = net_labels == label
plt.scatter(net_logits[idx, 0], net_logits[idx, 1])
plt.legend(np.arange(10, dtype=np.int32))
plt.show()
def adjust_learning_rate(args, optimizer, epoch):
# Decreasing the learning rate to the factor of 0.1 at epochs 51 and 65
# with a batch size of 256 this would comply with changing the lr at iterations 12k and 15k
if 50 < epoch < 65:
lr = args.lr * 0.1
elif epoch >= 65:
lr = args.lr * 0.01
else:
lr = args.lr
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def main():
parser = argparse.ArgumentParser(description='PyTorch L-Softmax MNIST Example')
parser.add_argument('--margin', type=int, default=4, metavar='M',
help='the margin for the l-softmax formula (m=1, 2, 3, 4)')
parser.add_argument('--batch-size', type=int, default=256, metavar='N',
help='input batch size for training (default: 256)')
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=100, metavar='N',
help='number of epochs to train (default: 100)')
parser.add_argument('--lr', type=float, default=0.1, metavar='LR',
help='initial learning rate (default: 0.1)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum (default: 0.9)')
parser.add_argument('--weight-decay', type=float, default=5e-4, metavar='W',
help='SGD weight decay (default: 0.0005)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--vis', default=False, metavar='V',
help='enables visualizing 2d features (default: False).')
args = parser.parse_args()
print(args)
use_cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
device = torch.device("cuda" if use_cuda else "cpu")
kwargs = {'num_workers': 4, 'pin_memory': True} if use_cuda else {}
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=args.test_batch_size, shuffle=True, **kwargs)
criterion = nn.CrossEntropyLoss().to(device)
if args.vis:
model = MNISTFIG2Net(margin=args.margin, device=device).to(device)
else:
model = MNISTNet(margin=args.margin, device=device).to(device)
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)
for epoch in range(1, args.epochs + 1):
adjust_learning_rate(args, optimizer, epoch)
train(args, model, criterion, device, train_loader, optimizer, epoch)
test(args, model, criterion, device, test_loader)
if args.vis:
plot_2d_features(args, model, device, test_loader)
if __name__ == '__main__':
main()