-
Notifications
You must be signed in to change notification settings - Fork 6
/
test.py
44 lines (35 loc) · 1.22 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import numpy as np
import cv2
import tensorflow as tf
face_detection = cv2.CascadeClassifier('haar_cascade_face_detection.xml')
camera = cv2.VideoCapture(0)
camera.set(cv2.CAP_PROP_FRAME_WIDTH, 1024)
camera.set(cv2.CAP_PROP_FRAME_HEIGHT, 768)
settings = {
'scaleFactor': 1.3,
'minNeighbors': 5,
'minSize': (50, 50)
}
labels = ["Neutral","Happy","Sad","Surprise","Angry"]
model = tf.keras.models.load_model('expression.model')
while True:
ret, img = camera.read()
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
detected = face_detection.detectMultiScale(gray, **settings)
for x, y, w, h in detected:
cv2.rectangle(img, (x, y), (x+w, y+h), (245, 135, 66), 2)
cv2.rectangle(img, (x, y), (x+w//3, y+20), (245, 135, 66), -1)
face = gray[y+5:y+h-5, x+20:x+w-20]
face = cv2.resize(face, (48,48))
face = face/255.0
predictions = model.predict(np.array([face.reshape((48,48,1))])).argmax()
state = labels[predictions]
font = cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(img,state,(x+10,y+15), font, 0.5, (255,255,255), 2, cv2.LINE_AA)
cv2.imshow('Facial Expression', img)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# writer.writeFrame(img)
if cv2.waitKey(5) != -1:
break
camera.release()
cv2.destroyAllWindows()