-
Notifications
You must be signed in to change notification settings - Fork 0
/
resnet18.py
250 lines (200 loc) · 9.39 KB
/
resnet18.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import tensorflow as tf
import numpy as np
import math
import time
import sys
BGR_MEAN = [103.939, 116.779, 123.68]
class ResNet18:
def __init__(self, ResNet_npy_path="weight/resnet18.npz", trainable=True, open_tensorboard=False):
"""
Initialize function
ResNet_npy_path: If path is not none, loading the model. Otherwise, initialize all parameters at random.
open_tensorboard: Is Open Tensorboard or not.
"""
if ResNet_npy_path is not None:
self.data_dict = np.load(ResNet_npy_path, encoding='latin1')
print( len(self.data_dict) )
print("npz file loaded ------- ", ResNet_npy_path)
else:
self.data_dict = None
print("npz file load error!")
sys.exit(1)
self.var_dict = {}
self.trainable = trainable
self.open_tensorboard = open_tensorboard
self.is_training = True
def set_is_training(self, isTrain):
""" Set is training bool. """
self.is_training = isTrain
def build(self, rgb, label_num=1200, last_layer_type="softmax"):
"""
load variable from npy to build the Resnet or Generate a new one
:param rgb: rgb image [batch, height, width, 3] values scaled [0, 1]
"""
# Preprocessing: Turning RGB to BGR - Mean.
start_time = time.time()
rgb_scaled = ((rgb + 1) / 2) * 255.0 # [-1, 1] ~ [0, 255]
red, green, blue = tf.split(axis=3, num_or_size_splits=3, value=rgb_scaled)
bgr = tf.concat(axis=3, values=[blue - BGR_MEAN[0], green - BGR_MEAN[1], red - BGR_MEAN[2]])
self.conv1 = self.conv_layer(bgr, 7, 3, 64, 2, "conv1")
self.conv_norm_1 = self.batch_norm(self.conv1)
self.conv1_relu = tf.nn.relu(self.conv_norm_1)
self.pool1 = self.max_pool(self.conv1_relu, 3, 2, "pool1")
self.block1_1 = self.res_block_3_layers(self.pool1, [64, 64], "block1_1", True)
self.block1_2 = self.res_block_3_layers(self.block1_1, [64, 64], "block1_2")
self.block2_1 = self.res_block_3_layers(self.block1_2, [128, 128], "block2_1", True, 2)
self.block2_2 = self.res_block_3_layers(self.block2_1, [128, 128], "block2_2")
self.block3_1 = self.res_block_3_layers(self.block2_2, [256, 256], "block3_1", True, 2)
self.block3_2 = self.res_block_3_layers(self.block3_1, [256, 256], "block3_2")
self.block4_1 = self.res_block_3_layers(self.block3_2, [512, 512], "block4_1", True, 2)
self.block4_2 = self.res_block_3_layers(self.block4_1, [512, 512], "block4_2")
self.pool2 = self.avg_pool(self.block4_2, 7, 1, "pool2")
self.fc1 = self.fc_layer(self.pool2, 2048, label_num, "fc1200")
if(last_layer_type == "sigmoid"):
self.prob = tf.nn.sigmoid(self.fc1, name="prob")
elif(last_layer_type == "softmax"):
self.prob = tf.nn.softmax(self.fc1, name="prob")
print(("build model finished: %fs" % (time.time() - start_time)))
def res_block_3_layers(self, bottom, channel_list, name, change_dimension = False, block_stride = 1):
"""
bottom: input values (X)
channel_list : number of channel in 3 layers
name: block name
"""
if (change_dimension):
short_cut_conv = self.conv_layer(bottom, 3, bottom.get_shape().as_list()[-1], channel_list[1], block_stride, name + "_ShortcutConv")
block_conv_input = self.batch_norm(short_cut_conv)
else:
block_conv_input = bottom
block_conv_1 = self.conv_layer(bottom, 3, bottom.get_shape().as_list()[-1], channel_list[0], block_stride, name + "_lovalConv1")
block_norm_1 = self.batch_norm(block_conv_1)
block_relu_1 = tf.nn.relu(block_norm_1)
block_conv_2 = self.conv_layer(block_relu_1, 3, channel_list[0], channel_list[1], 1, name + "_lovalConv2")
block_norm_2 = self.batch_norm(block_conv_2)
block_res = tf.add(block_conv_input, block_norm_2)
relu = tf.nn.relu(block_res)
return relu
def batch_norm(self, inputsTensor):
"""
Batchnorm
"""
_BATCH_NORM_DECAY = 0.99
_BATCH_NORM_EPSILON = 1e-12
return tf.layers.batch_normalization(inputs=inputsTensor, axis = 3, momentum=_BATCH_NORM_DECAY, epsilon=_BATCH_NORM_EPSILON, center=True, scale=True, training=self.is_training)
def avg_pool(self, bottom, kernal_size = 2, stride = 2, name = "avg"):
"""
bottom: input values (X)
kernal_size : n * n kernal
stride : stride
name : block_layer name
"""
# print(name + ":")
# print(bottom.get_shape().as_list())
return tf.nn.avg_pool(bottom, ksize=[1, kernal_size, kernal_size, 1], strides=[1, stride, stride, 1], padding='VALID', name=name)
def max_pool(self, bottom, kernal_size = 2, stride = 2, name = "max"):
"""
bottom: input values (X)
kernal_size : n * n kernal
stride : stride
name : block_layer name
"""
# print(name + ":")
# print(bottom.get_shape().as_list())
return tf.nn.max_pool(bottom, ksize=[1, kernal_size, kernal_size, 1], strides=[1, stride, stride, 1], padding='SAME', name=name)
def conv_layer(self, bottom, kernal_size, in_channels, out_channels, stride, name):
"""
bottom: input values (X)
kernal_size : n * n kernal
in_channels: number of input filters
out_channels : number of output filters
stride : stride
name : block_layer name
"""
# print(name + ":")
# print(bottom.get_shape().as_list())
with tf.variable_scope(name):
filt, conv_biases = self.get_conv_var(kernal_size, in_channels, out_channels, name)
conv = tf.nn.conv2d(bottom, filt, [1,stride,stride,1], padding='SAME')
bias = tf.nn.bias_add(conv, conv_biases)
tf.summary.histogram('weight', filt)
tf.summary.histogram('bias', conv_biases)
return bias
def get_conv_filter(self, name):
return tf.constant(self.data_dict[name][0], name="filter")
def fc_layer(self, bottom, in_size, out_size, name):
"""
bottom: input values (X)
in_size : number of input feature size
out_size : number of output feature size
"""
# print(name + ":")
# print(bottom.get_shape().as_list())
with tf.variable_scope(name):
weights, biases = self.get_fc_var(in_size, out_size, name)
x = tf.reshape(bottom, [-1, in_size])
fc = tf.nn.bias_add(tf.matmul(x, weights), biases)
tf.summary.histogram('weight', weights)
tf.summary.histogram('bias', biases)
return fc
def get_conv_var(self, filter_size, in_channels, out_channels, name):
"""
filter_size : 3 * 3
in_channels : number of input filters
out_channels : number of output filters
name : block_layer name
"""
initial_value = tf.truncated_normal([filter_size, filter_size, in_channels, out_channels], 0.0, stddev = 1 / math.sqrt(float(filter_size * filter_size)))
filters = self.get_var(initial_value, name, 0, name + "_filters")
initial_value = tf.truncated_normal([out_channels], 0.0, 1.0)
biases = self.get_var(initial_value, name, 1, name + "_biases")
return filters, biases
def get_fc_var(self, in_size, out_size, name):
"""
in_size : number of input feature size
out_size : number of output feature size
name : block_layer name
"""
initial_value = tf.truncated_normal([in_size, out_size], 0.0, stddev = 1 / math.sqrt(float(in_size)))
weights = self.get_var(initial_value, name, 0, name + "_weights")
initial_value = tf.truncated_normal([out_size], 0.0, 1.0)
biases = self.get_var(initial_value, name, 1, name + "_biases")
return weights, biases
def get_var(self, initial_value, name, idx, var_name):
"""
load variables from Loaded model or new generated random variables
initial_value : random initialized value
name: block_layer name
index: 0,1 weight or bias
var_name: name + "_filter"/"_bias"
"""
if((name, idx) in self.var_dict):
# print("Reuse Parameters...")
# print(self.var_dict[(name, idx)])
return self.var_dict[(name, idx)]
if self.data_dict is not None and name in self.data_dict:
value = self.data_dict[name][idx]
else:
value = initial_value
if self.trainable:
var = tf.Variable(value, name=var_name)
else:
var = tf.constant(value, dtype=tf.float32, name=var_name)
self.var_dict[(name, idx)] = var
# print var_name, var.get_shape().as_list()
assert var.get_shape() == initial_value.get_shape()
return var
def save_npy(self, sess, npy_path="./model/Resnet-save.npy"):
"""
Save this model into a npy file
"""
assert isinstance(sess, tf.Session)
self.data_dict = None
data_dict = {}
for (name, idx), var in list(self.var_dict.items()):
var_out = sess.run(var)
if name not in data_dict:
data_dict[name] = {}
data_dict[name][idx] = var_out
np.save(npy_path, data_dict)
print(("file saved", npy_path))
return npy_path