-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhelper.py
209 lines (162 loc) · 8.44 KB
/
helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import numpy as np
import helper as hp
import numpy.linalg as LA
import scipy.linalg as SLA
from time import perf_counter
from time import perf_counter_ns
# ----i/p: interger (degree); o/p: Identity matrix of that degree----#
def identity(n):
return np.eye(n)
# ----dot product of two array with asssuming they have same length----#
def dot_product(arr1, arr2):
n = arr1.shape[0]
return sum([el1*el2 for el1,el2 in zip(arr1, arr2)])
# cross product of two matrices assuming they are matrrix multiplicable----#
def cross_product(A,B):
shape1, shape2 = A.shape, B.shape
if A.ndim == 1:
if B.ndim == 1: # both 1-D matrices
C = np.array(dot_product(A, B))
else: # A 1-D, B row ratrix
n = shape2[1]
C = np.zeros((n,))
for i in range(shape2[1]):
C[i] = dot_product(A, B[:,i])
else:
if B.ndim == 1: # A rectangular, B column matrix
n = shape1[0]
C = np.zeros((n,))
for i in range(n):
C[i] = dot_product(A[i,:],B)
else: # both rectangular matrices
n, m = shape1[0], shape2[1]
C = np.zeros((n,m))
for row in range(n):
for col in range(m):
C[row,col] = dot_product(A[row,:], B[:,col])
return C
# ----i/p: integer n, o/p: random array of length n----#
def get_array(n):
return np.random.uniform(-100,100,(n,))
# ----i/p: integer n, o/p: random square matrix of degree n----#
def get_matrix(n, random_state = 55):
np.random.seed(random_state)
return np.random.uniform(-100,100,(n, n))
# ----swaps any equal length arrays of two rows in a matrix----#
# i/p: operable matrix A, indeces of rows as two intergers, indeces of columns as two integers where portions are to be swapped
# o/p: matrix A after the swap operation
def swap_row(A, diagonal_row, pivot_row, from_col = 0, to_col = -1):
if to_col == -1:
to_col = len(A)
A[[diagonal_row, pivot_row], from_col:to_col] = A[[pivot_row, diagonal_row], from_col:to_col]
return A
# ----i/p: array of length n, o/p: index of the element which has max absolute value----#
def absolute_max_element_index(arr):
arr = list(map(abs, arr))
arr_len, max_el_index = len(arr), 0
max_el = arr[max_el_index]
for index in range(1,arr_len):
if arr[index] > max_el:
max_el_index = index
max_el = arr[max_el_index]
return max_el_index
# i/p: suqare Upper triangular matrix U with degree n, array b of length n
# o/p: solution array C retained by backward substitution
# where, UC = b
def backward_substitution(mat, arr):
(n,m) = mat.shape # n X n square matrix
C = np.zeros((m,)) # initialization of C
for i in range(n-1,-1,-1):
substracting_factor = 0 if (i == n-1) else dot_product(mat[i, i+1:], C[i+1:])
C[i] = (arr[i] - substracting_factor) / mat[i, i]
return C
# i/p: suqare Unit Lower triangular matrix L with degree n, array b of length n
# o/p: solution array C retained by forward substitution
# where, LC = b
def forward_substitution(mat, arr):
(n,m) = mat.shape # n X n square matrix
C = np.zeros((m,)) # initialization of C
for i in range(n):
substracting_factor = 0 if (i == 0) else dot_product(mat[i, :i], C[:i])
C[i] = (arr[i] - substracting_factor) / mat[i, i]
return C
#------------i/p: matrix A; o/p: P, L, U using patrial pivoting and Time Taken for the task-----------#
# PA = LU
# P : Permutation matrix
# L : Lower unit triangular matrix
# U : Upper triangular matrix
def LU_partial_pivoting(A):
degree = A.shape[0]
L = hp.identity(degree)
P = hp.identity(degree)
U = A.copy()
pivot_index_array = []
start = float(perf_counter_ns())
for row in range(degree-1):
pivot_search_array = U[row:,row]
if sum(abs(pivot_search_array)) == 0: # checks if the matrix is sigular
print(f'the marix is singular and the rank is at least {len(pivot_index_array)}')
return None
pivot_index = row + hp.absolute_max_element_index(pivot_search_array)
pivot_index_array.append(pivot_index) # track pivot index(>=i) in column i for first n-1 columns
if pivot_index != row:
U = hp.swap_row(U, row, pivot_index, from_col = row)
if row > 0:
L = hp.swap_row(L, row, pivot_index, to_col = row)
P = hp.swap_row(P, row, pivot_index)
for row_below in range(row+1, degree):
pivot_ratio = L[row_below, row] = U[row_below,row] / U[row, row]
U[row_below,row:] = U[row_below,row:] - (pivot_ratio * U[row,row:])
decomp_time = float(perf_counter_ns()) - start # total time for decomposition
return P, L, U, decomp_time
#------------UDF built from scratch for solving system of equations using LU decomp and Partial Pivoting-----------#
# i/p : A (coeff. matrix), b (constant array)
# o/p : x (solution)
# where, PAx = LUx = LC = Pb
def my_system_of_equations_solver(A, b):
decomp = LU_partial_pivoting(A)
if decomp == None:
return None
P, L, U, decomp_time = decomp
Pb = hp.cross_product(P, b)
start = float(perf_counter_ns())
C = hp.forward_substitution(L, Pb) # solves for C, where, LC = Pb
x = hp.backward_substitution(U, C) # solves for x, where, Ux = C
solution_time = float(perf_counter_ns()) - start # time for processing the solution after getting P, L, U
ax_minus_b_norm = LA.norm(hp.cross_product(A, x) - b) # Norm of Ax-b
pa_minus_lu_norm = LA.norm(hp.cross_product(P, A) - hp.cross_product(L, U)) # Norm of PA-LU
return {'solution':x, 'axb_norm': ax_minus_b_norm, 'palu_norm':pa_minus_lu_norm,
'time_solve':solution_time, 'time_decomp':decomp_time}
#------------UDF for solving system of equations as Scipy as Base-----------#
def scipy_system_of_equations_solver(A, b):
try:
# -------------solve using scipy.linalg's lu method-------------
start = float(perf_counter_ns())
P, L, U = SLA.lu(A)
P = LA.inv(P) # P(permutation matrix) from scipy.lu is inverse of permutaion matrix P of PAx = LUx = Pb
decomp_time_lu = float(perf_counter_ns()) - start
Pb = P@b
start = float(perf_counter_ns())
C = SLA.solve_triangular(L, Pb, lower=True, unit_diagonal=True) # solves for C, where, LC = Pb
x_lu = SLA.solve_triangular(U, C) # solves for x, where, Ux = C
solution_time_lu = float(perf_counter_ns()) - start # time for processing the solution after getting P, L, U
# -------------solve using scipy.linalg's lu_factor method-------------
start = float(perf_counter_ns())
parameters = (lu, piv) = SLA.lu_factor(A) # PLU decomposition using scipy.linalg's lu_factor method
section_ge = float(perf_counter_ns())
x_lu_factor = SLA.lu_solve(parameters, b) # solve for x using scipy.linalg's lu_factor method
solution_time_lu_factor = float(perf_counter_ns()) - section_ge # time taken for PLU decomposition
decomp_time_lu_factor = section_ge - start # time taken for # solve for x
# calculation of norms
ax_minus_b_norm_lu = LA.norm(A@x_lu - b) # Norm of Ax-b using scipy.linalg's lu method
ax_minus_b_norm_lu_factor = LA.norm(A@x_lu_factor - b) # Norm of Ax-b using scipy.linalg's lu_factor method
pa_minus_lu_norm_lu = LA.norm(P@A - L@U) # Norm of PA-LU using scipy.linalg's lu method
# Norm of PA-LU using scipy.linalg's lu_factor method could not be easily calculated because the Permutation matrix is in
# LEPACK's permutation array form
return {'solution':x_lu, 'palu_norm_lu':pa_minus_lu_norm_lu, 'axb_norm_lu': ax_minus_b_norm_lu,
'axb_norm_lu_factor':ax_minus_b_norm_lu_factor,
'time_solve_lu':solution_time_lu, 'time_decomp_lu':decomp_time_lu,
'time_solve_lu_factor':solution_time_lu_factor, 'time_decomp_lu_factor':decomp_time_lu_factor}
except SLA.LinAlgError:
print('The marix is singular. Cannot solve for an unique solution')
return None