-
Notifications
You must be signed in to change notification settings - Fork 1
/
modeling_distill.py
157 lines (142 loc) · 6.32 KB
/
modeling_distill.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import torch
import torch.nn as nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
import torch.nn.functional as F
from transformers.modeling_outputs import SequenceClassifierOutput
from transformers.models.bert import BertPreTrainedModel, BertModel
from transformers.models.distilbert import DistilBertModel
class BertForDistillSequenceClassification(BertPreTrainedModel):
def __init__(self, config, teacher_model=None):
super().__init__(config)
self.num_labels = config.num_labels
self.config = config
self.teacher_model = teacher_model
#self.teacher_model = self.teacher_model.eval()
#self.bert = BertModel(config)
if config.model_flag == "distil":
self.bert = DistilBertModel(config)
#classifier_dropout = config.hidden_dropout_prob
else:
self.bert = BertModel(config)
#classifier_dropout = (
# config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
#)
#self.dropout = nn.Dropout(classifier_dropout)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
#self.gate = nn.Sequential(
# nn.Dropout(classifier_dropout),
# nn.Linear(config.hidden_size, 1),
# nn.Sigmoid(),
#)
self.init_weights()
"""
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=SequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
"""
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ...,
config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
#if not self.gate_require_grad:
# for param in self.gate.parameters():
# param.requires_grad = False
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs[1]
logits = self.classifier(pooled_output)
self.teacher_model.eval()
tea_logits = self.teacher_model(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
tea_logits = tea_logits.logits.detach()
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
softmax = nn.Softmax(dim=1)
distill_loss_fct = nn.KLDivLoss(reduction='none')
device = outputs[1].get_device()
labels_ = labels.reshape(labels.size()[0], 1)
labels_one_hot = (labels_ == torch.arange(self.num_labels).reshape(1, self.num_labels).to(device)).float()
loss_label_std = distill_loss_fct(
F.log_softmax(logits, dim=-1),
labels_one_hot
)
loss_label_tea = distill_loss_fct(
F.log_softmax(tea_logits, dim=-1),
labels_one_hot
)
loss_tea_std = distill_loss_fct(
F.log_softmax(logits / self.config.tempreture, dim=-1),
F.log_softmax(tea_logits / self.config.tempreture, dim=-1)
) * (self.config.tempreture ** 2)
mask = torch.gt(torch.sum(loss_label_std, 1), torch.sum(loss_label_tea, 1))
index_label = torch.zeros(tea_logits.size()[0], 2).to(device).scatter_(1, labels_, 1)
teacher_conf = torch.sum(torch.mul(softmax(tea_logits), index_label), dim=1)
mask = torch.mul(mask, teacher_conf)
loss_logit = torch.mean(mask * torch.sum(loss_tea_std, 1))
loss += self.config.alpha * loss_logit + loss
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)