-
Notifications
You must be signed in to change notification settings - Fork 28
/
palm_swapfmt.m
61 lines (59 loc) · 1.99 KB
/
palm_swapfmt.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
function Pnew = palm_swapfmt(Pset)
% Convert a set of permutation matrices to an array
% of permutation indices and vice versa.
%
% Cell array <===> Shuffling indices
% Shuffling indices <===> Cell array
%
% Pnew = palm_swapfmt(Pset)
%
% Pset : Set of permutations, sign-flips or both.
% This can be supplied either as a cell array
% of (sparse) permutation matrices, or an
% array of permutation indices.
% Pnew : The converted set of permutations.
%
% _____________________________________
% Anderson M. Winkler
% FMRIB / University of Oxford
% Dec/2013
% http://brainder.org
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
% PALM -- Permutation Analysis of Linear Models
% Copyright (C) 2015 Anderson M. Winkler
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
if iscell(Pset),
Pnew = zeros(size(Pset{1},1),numel(Pset));
I = (1:size(Pset{1},1))';
for p = 1:numel(Pset),
Pnew(:,p) = Pset{p}*I;
end
if size(unique(abs(Pnew)','rows'),1) == 1;
Pnew = sign(Pnew);
end
else
P = speye(size(Pset,1));
Pnew = cell(size(Pset,2),1);
for p = 1:size(Pset,2),
sgn = sign(Pset(:,p));
idx = abs(Pset(:,p));
if all(true(size(idx)) == idx),
Pnew{p} = sparse(diag(sgn));
else
Pnew{p} = sparse(diag(sgn))*P(idx,:);
end
end
end