-
Notifications
You must be signed in to change notification settings - Fork 7
/
DeepCycle.py
612 lines (492 loc) · 21.1 KB
/
DeepCycle.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
import argparse
import tensorflow as tf
import tensorflow_probability as tfp
import tensorflow_datasets as tfds
import numpy as np
import pandas as pd
from scipy import stats
from scipy.spatial import distance_matrix
from scipy.stats import gaussian_kde
from scipy import interpolate
from sklearn.mixture import GaussianMixture
import matplotlib.pyplot as plt
import matplotlib
import matplotlib.cm as cm
import seaborn as sns
import math
import os
import shutil
import sys
from copy import copy
import time
import multiprocessing as mp
import json
import anndata
if not sys.warnoptions:
import warnings
warnings.simplefilter("ignore")
parser = argparse.ArgumentParser(description='Run DeepCycle.')
parser.add_argument('--input_adata',type=str, required=True,help='Anndata input file preprocessed with velocyto and scvelo (moments).')
parser.add_argument('--gene_list',type=str, required=True,help='Subset of genes to run the inference on.')
parser.add_argument('--base_gene',type=str, required=True,help='Gene used to have an initial guess of the phase.')
parser.add_argument('--expression_threshold',type=float, required=True,help='Unsplced/spliced expression threshold.')
parser.add_argument('--gpu',const=True,default=False, nargs='?',help='Use GPUs.')
parser.add_argument('--hotelling',const=True,default=False, nargs='?',help='Use Hotelling filter.')
parser.add_argument('--output_adata',type=str, required=True,help='Anndata output file. ')
args = parser.parse_args()
#REQUIRED INPUTS
input_adata_file = args.input_adata
list_of_genes_file = args.gene_list
output_anndata_file = args.output_adata
base_gene = args.base_gene
GPU = args.gpu
HOTELLING = args.hotelling
expression_threshold = args.expression_threshold
cwd = os.getcwd()
print("[Current working directory]:",cwd)
CycleAE_dir = cwd+'/DeepCycle'
if not os.path.exists( CycleAE_dir ):
os.makedirs( CycleAE_dir )
#TRAINING SETTINGS
fraction_of_cells_to_validation = 0.17
BATCH_SIZE = 5 # number of data points in each batch
N_EPOCHS = 1000 # times to run the model on complete data
lr = 1e-4 # initial learning rate
print("[TensorFlow version]:", tf.version.VERSION)
tfk = tf.keras
tfkl = tf.keras.layers
tfpl = tfp.layers
tfd = tfp.distributions
if GPU:
print("[Using GPUs]")
physical_devices = tf.config.list_physical_devices('GPU')
tf.config.set_visible_devices(physical_devices,'GPU')
print("[Number of available GPUs]:", len(tf.config.experimental.list_physical_devices('GPU')))
class Hotelling:
def __init__(self, x, y, dt, eta):
self.x = x
self.y = y
self.sd_x = np.std(x)
self.sd_y = np.std(y)
self.delta_t = dt
self.eta = eta
self.xmin = self.x.min()
self.xmax = self.x.max()
self.ymin = self.y.min()
self.ymax = self.y.max()
s = 100000
self.hx = (self.xmax-self.xmin)/s
self.hy = (self.ymax-self.ymin)/s
self.flag = 'OK'
try:
self.density, self.potential, self.X, self.Y, self.Z = self.potential_estimation()
self.x_ss_min, self.x_ss_max = self.find_minima()
hessian_min = self.hessian_estimation(self.x_ss_min)
hessian_max = self.hessian_estimation(self.x_ss_max)
self.covariance_min = np.linalg.inv(hessian_min)
self.covariance_max = np.linalg.inv(hessian_max)
pooled_inverse_covariance_matrix = np.linalg.inv(0.5*(self.covariance_max+self.covariance_min))
if self.confidence_level(self.x_ss_max)<0.05 or self.confidence_level(self.x_ss_min)<0.05:
self.hotelling_t_squared = 0
self.flag = 'LOW_DENSITY'
else:
self.hotelling_t_squared = (self.x_ss_max - self.x_ss_min).dot(pooled_inverse_covariance_matrix.dot(self.x_ss_max - self.x_ss_min))
if np.linalg.norm(self.x_ss_min-self.x_ss_max)<0.1:
self.hotelling_t_squared = 0
self.flag = 'TOO_CLOSE'
except np.linalg.LinAlgError as err:
if ( ('singular matrix' in str(err)) or ('Singular matrix' in str(err)) ):
self.hotelling_t_squared = 0
self.flag = 'SINGULAR_MATRIX'
else:
raise
self.path = None
def potential_estimation(self):
X, Y = np.mgrid[self.xmin:self.xmax:200j, self.ymin:self.ymax:200j]
positions = np.vstack([X.ravel(), Y.ravel()])
values = np.vstack([self.x, self.y])
kernel = gaussian_kde(values)
Z = np.reshape(kernel(positions).T, X.shape)
return kernel, kernel.logpdf, X, Y, Z
def calculate_potential_force(self,path):
#Initialization
Fv = []
hx = self.hx
hy = self.hy
potential = self.potential
#Calculate force for each point in path
for i in range(len(path)):
x = path[i][0]
y = path[i][1]
dV_dx = ( potential((x+hx,y)) - potential((x-hx,y)) )/(2*hx)
dV_dy = ( potential((x,y+hy)) - potential((x,y-hy)) )/(2*hy)
orthogonal_potential = np.array([dV_dx,dV_dy]).flatten()
Fv.append(orthogonal_potential)
return Fv
def find_minima(self):
#Initialization
potential = self.potential
delta_t = self.delta_t
eta = self.eta
start_time = time.time()
#2 minima first estimation with Gaussian Mixture Model
xy_dict = {'x':self.x,'y':self.y}
xy_df = pd.DataFrame(xy_dict)
gm = GaussianMixture(n_components=2)
gm.fit(xy_df)
points = gm.means_
#Refining the minima estimation with the potential descent
velocities = [np.array([0.0,0.0]) for i in range(len(points))]
for i in range(1000):
potential_force = self.calculate_potential_force( points )
acceleration = [potential_force[k]-eta*velocities[k] for k in range(len(potential_force)) ]
old_points = copy(points)
total_acceleration = 0.0
for j in range(0,len(points)):
points[j] += 0.5*acceleration[j]*delta_t**2 + velocities[j]*delta_t
velocities[j] += acceleration[j]*delta_t
total_acceleration += np.linalg.norm(acceleration[j])
if np.linalg.norm(points[0]-points[1])<0.1 or total_acceleration < 0.00001:
break
x0 , x1 = points
#Sort the minima
if np.linalg.norm(x1) < np.linalg.norm(x0):
return x1, x0
else:
return x0, x1
def hessian_estimation(self,xp):
#Estimate the inverse of the hessian matrix in x
x = xp[0]
y = xp[1]
hx = self.hx
hy = self.hy
potential = self.potential
d2V_dx2 = float( (potential((x+hx,y))-2*potential((x,y))+potential((x-hx,y)))/(hx**2) )
d2V_dxdy = float( (potential((x+hx,y+hy))-potential((x+hx,y))-potential((x,y+hy))+potential((x,y)))/(hx*hy) )
d2V_dy2 = float( (potential((x,y+hy))-2*potential((x,y))+potential((x,y+hy)))/(hy**2) )
hessian = -np.array([[d2V_dx2,d2V_dxdy],[d2V_dxdy,d2V_dy2]])
return hessian
def plot_density(self,file=None):
xmin = self.xmin
xmax = self.xmax
ymin = self.ymin
ymax = self.ymax
data_xy = np.array([self.x,self.y])
cov_matrix = np.cov( data_xy )
v, w = np.linalg.eigh( cov_matrix )
x_avg, y_avg = np.mean( data_xy, axis=1 )
first_component = np.sqrt(v[1])*w[:,1]
second_component = np.sqrt(v[0])*w[:,0]
u = [first_component[0],second_component[0]]
v = [first_component[1],second_component[1]]
origin = [x_avg], [y_avg]
fig = plt.figure()
ax = fig.add_subplot(111)
ax.imshow(np.rot90(self.Z), cmap=plt.cm.jet_r, extent=[xmin, xmax, ymin, ymax], aspect='auto',zorder=0)
cset = ax.contour(self.X,self.Y,self.Z,zorder=1)
ax.clabel(cset, inline=1, fontsize=10)
ax.plot(self.x_ss_min[0],self.x_ss_min[1], 'k.', markersize=10, color='red')
ax.plot(self.x_ss_max[0],self.x_ss_max[1], 'k.', markersize=10, color='red')
ax.quiver(x_avg, y_avg, first_component[0], first_component[1], color='white', angles='xy', scale_units='xy', scale=1,zorder=3)
ax.quiver(x_avg, y_avg, second_component[0], second_component[0], color='gray', angles='xy', scale_units='xy', scale=1,zorder=3)
ax.set_xlim([xmin, xmax])
ax.set_ylim([ymin, ymax])
ax.set_title('T-squared='+str(self.hotelling_t_squared))
ax.set_xlabel('spliced')
ax.set_ylabel('unspliced')
if file!=None:
plt.savefig(file)
def confidence_level(self, point):
density = self.density
iso = density(point)
sample = density.resample(size=200)
insample = density(sample)<iso
integral = insample.sum() / float(insample.shape[0])
return integral
#CIRCULAR LAYER FOR THE AUTOENCODER
class Circularize(tfkl.Layer):
def __init__(self, input_dim=1):
super(Circularize, self).__init__()
def call(self, inputs):
return tf.concat([tf.math.cos(2*np.pi*inputs),tf.math.sin(2*np.pi*inputs)], axis=1)
sys.stdout.write("[Loading anndata]: ")
sys.stdout.flush()
adata = anndata.read_h5ad(input_adata_file)
print(input_adata_file)
sys.stdout.write("[Loading genes]: ")
cell_cycle_genes = []
with open(list_of_genes_file,'r') as fp:
for line in fp:
line = line.rstrip()
if line != '':
cell_cycle_genes.append(line)
print(list_of_genes_file)
#FILTER GENES BY HOTELLING
gene_list = list(adata.var.index)
hot_dir = CycleAE_dir+'/hotelling/'
def process_gene(gene, adata=adata, hot_dir=hot_dir):
try:
n = gene_list.index(gene)
hotelling = 0
df = pd.DataFrame({ 'spliced':adata.layers['Ms'][:,n], 'unspliced':adata.layers['Mu'][:,n] })
if (df.mean()<0.5).all():
return
hot = Hotelling( x=df['spliced'], y=df['unspliced'], dt=0.1, eta=10 )
if hot.flag!='OK':
lock.acquire()
print('['+gene+']: discarded because of', hot.flag)
lock.release()
return
hotelling = abs(hot.hotelling_t_squared)
except ValueError:
lock.acquire()
print('['+gene+']: discarded because of ValueError')
lock.release()
return
if hotelling<0.5:
lock.acquire()
print('['+gene+']: discarded because of low T-squared')
lock.release()
return
else:
svgfile_hotelling = hot_dir+gene+'.svg'
try:
hot.plot_density(svgfile_hotelling)
except Exception as e:
lock.acquire()
print('['+gene+']: error saving',svgfile_hotelling, e)
lock.release()
lock.acquire()
print('['+gene+']: OK')
lock.release()
return(gene)
if HOTELLING:
try:
if os.path.exists(hot_dir):
shutil.rmtree(hot_dir, ignore_errors=True)
os.mkdir(hot_dir)
else:
os.mkdir(hot_dir)
except:
print("[ERROR]: Creation of the directory %s failed" % hot_dir)
raise
def init(l):
global lock
lock = l
l = mp.Lock()
pool = mp.Pool(initializer=init, initargs=(l,))
pool_output = pool.map(process_gene, cell_cycle_genes)
filtered_cell_cycle_genes = [i for i in pool_output if i]
gene_json_file = hot_dir+'filtered_genes.json'
with open(gene_json_file,'w') as fp:
json.dump(filtered_cell_cycle_genes, fp)
print("[Filtered genes]:", gene_json_file)
else:
filtered_cell_cycle_genes = cell_cycle_genes
#FUNCTION TO GENERATE THE INPUTS OF THE AUTOENCODER
def generate_input(list_of_genes, adata):
gene_list = list(adata.var.index)
n = gene_list.index(list_of_genes[0])
df_all = pd.DataFrame({ 'spliced':adata.layers['Ms'][:,n], 'unspliced':adata.layers['Mu'][:,n] })
for gene in list_of_genes[1:]:
try:
n = gene_list.index(gene)
df = pd.DataFrame({ 'spliced':adata.layers['Ms'][:,n], 'unspliced':adata.layers['Mu'][:,n] })
if (df.mean()<expression_threshold).all():
list_of_genes.remove(gene)
continue
except ValueError:
list_of_genes.remove(gene)
continue
df_all = pd.concat([df_all, df], axis=1)
normalized_df=(df_all-df_all.mean())/df_all.std()
np_data = normalized_df.to_numpy()
nan_columns = list(np.where(np.any(~np.isfinite(np_data),axis=0))[0])
nan_indexes = list([ n//2 for n in nan_columns])
even_columns = list([ 2*n for n in nan_indexes ])
odd_columns = list([ 2*n+1 for n in nan_indexes ])
for idx in sorted(nan_indexes, reverse=True):
del list_of_genes[idx]
columns_to_drop = sorted(even_columns + odd_columns)
normalized_df.columns = list(range(normalized_df.shape[1]))
df_all.columns = list(range(df_all.shape[1]))
df_all = df_all.drop(df_all.columns[columns_to_drop], axis=1)
normalized_df = normalized_df.drop(normalized_df.columns[columns_to_drop], axis=1)
#print("Left genes: ",len(list_of_genes), normalized_df.shape)
return list_of_genes, normalized_df.to_numpy() #cells x (2 genes)
#GENERATE INPUTS
genes, np_data = generate_input(filtered_cell_cycle_genes, adata)
print("[Genes]:", genes)
print("[N. OF USED GENES]",len(genes))
np.savez( CycleAE_dir+"/input_data.npz", genes, np_data, allow_pickle=True)
n_genes = len(genes)
n_cells = np_data.shape[0]
n_columns = np_data.shape[1]
if n_columns != 2*n_genes:
print("[ERROR]: incoherent number of genes and columns")
n_cells_to_validation = int(n_cells*fraction_of_cells_to_validation)
print( "[Total number of cells]:", n_cells)
print( "[Number of cells used for training]:", n_cells-n_cells_to_validation)
print( "[Number of cells used for validation]:", n_cells_to_validation)
#BUILD INITIAL GUESS BASED ON A GENE
index_gene = genes.index(base_gene)
angles = 1.5*(np.array([ [math.atan2(np_data[i,2*index_gene+1],np_data[i,2*index_gene])] for i in range(len(np_data)) ]) % (2*np.pi))/(2*np.pi)
#PARAMETERS
INPUT_DIM = len(genes)*2 # size of each input
HIDDEN_DIM = len(genes)*4 # hidden dimension
LATENT_DIM = 1 # latent vector dimension
input_shape = (INPUT_DIM,)
encoded_size = LATENT_DIM
base_depth = HIDDEN_DIM
print("[Model input shape]:", input_shape)
#BUILD THE INPUT DATASET OBJECTS
e_dataset = tf.data.Dataset.from_tensor_slices((np_data,angles)).shuffle(1000).batch(BATCH_SIZE)
n_batches_to_validation = math.ceil(tf.data.experimental.cardinality(e_dataset).numpy() * fraction_of_cells_to_validation)
eval_e_dataset = e_dataset.take(n_batches_to_validation)
train_e_dataset = e_dataset.skip(n_batches_to_validation)
ae_dataset = tf.data.Dataset.from_tensor_slices((np_data,np_data)).shuffle(1000).batch(BATCH_SIZE)
eval_ae_dataset = ae_dataset.take(n_batches_to_validation)
train_ae_dataset = ae_dataset.skip(n_batches_to_validation)
#FUNCTION TO PLOT THE TRAINING
def plot_training(fit):
best_epoch = fit.epoch[fit.history['val_loss'].index(min(fit.history['val_loss']))]
fig, ax = plt.subplots(figsize=(3,3))
ax.plot(fit.epoch,fit.history['val_loss'],'.-',color='red', label='validation')
ax.plot(fit.epoch,fit.history['loss'],'.-',color='orange', label='train')
ax.set_yscale('log')
ax.set(ylabel='MSE')
ax.axvspan(best_epoch-0.5,best_epoch+0.5, alpha=0.5, color='red')
ax.legend()
print("[Best epoch]:", best_epoch)
print("[MSE]:", min(fit.history['val_loss']))
#ENCODER
inputs = tfk.Input(shape=input_shape)
norm_atans = tfkl.Reshape((1,))((tf.math.atan2(inputs[...,2*index_gene+1],inputs[...,2*index_gene]) % (2*np.pi))/(2*np.pi) )
x = tfkl.GaussianNoise(0.01)(inputs)
x = tfkl.Dense(base_depth,activation=tf.nn.leaky_relu)(x)
x = tfkl.Dense(base_depth,activation=tf.nn.leaky_relu)(x)
x = tfkl.Dense(base_depth,activation=tf.nn.leaky_relu)(x)
x = tfkl.Dense(base_depth,activation=tf.nn.leaky_relu)(x)
noisy_atans = tfkl.GaussianNoise(0.05)(norm_atans)
#manip_inputs = tfkl.concatenate([x,noisy_angle], axis=1)
manip_inputs = tfkl.concatenate([x,norm_atans], axis=1)
manip_inputs = tfkl.Dense(1)(manip_inputs)
outputs = tfkl.GaussianNoise(0.05)(manip_inputs)
encoder = tfk.Model(inputs, outputs, name="non_seq_encoder_noisy")
#encoder.summary()
#DECODER
decoder = tfk.Sequential([
tfkl.InputLayer(input_shape=encoded_size),
Circularize(),
tfkl.GaussianNoise(0.03),
tfkl.Dense(base_depth, activation=tf.nn.leaky_relu),
tfkl.Dense(base_depth, activation=tf.nn.leaky_relu),
tfkl.Dense(base_depth, activation=tf.nn.leaky_relu),
tfkl.Dense(base_depth, activation=tf.nn.leaky_relu),
tfkl.Dense(input_shape[0],
activation=None),
])
#decoder.summary()
#AUTOENCODER
ae = tfk.Model(inputs=encoder.inputs,
outputs=decoder(encoder.outputs))
#ENCODER PRETRAINING
encoder.compile(optimizer=tf.optimizers.Adam(learning_rate=lr),
loss=tf.keras.losses.mean_squared_error, metrics=[tf.keras.metrics.kullback_leibler_divergence])
e_fit = encoder.fit(train_e_dataset,
epochs=N_EPOCHS,
validation_data=eval_e_dataset, batch_size=BATCH_SIZE,
callbacks=[tf.keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.8, patience=5, min_lr=0.00001),
tf.keras.callbacks.EarlyStopping(monitor='val_loss', min_delta=0.0, patience=20, verbose=1, mode='auto', restore_best_weights=True)
]
)
if not os.path.exists(CycleAE_dir+'/training'):
os.makedirs(CycleAE_dir+'/training')
print("[ ENCODER PRE-TRAINING ]")
plot_training(e_fit)
plt.savefig(CycleAE_dir+'/training/encoder_pretraining.svg')
plt.clf()
#AUTOENCODER TRAINING
ae.compile(optimizer=tf.optimizers.Adam(learning_rate=lr/10),
loss=tf.keras.losses.mean_squared_error, metrics=[tf.keras.metrics.kullback_leibler_divergence])
ae_fit = ae.fit(train_ae_dataset,
epochs=N_EPOCHS,
validation_data=eval_ae_dataset, batch_size=BATCH_SIZE,
callbacks=[tf.keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.8, patience=5, min_lr=0.000001),
tf.keras.callbacks.EarlyStopping(monitor='val_loss', min_delta=0.0, patience=20, verbose=1, mode='auto', restore_best_weights=True)]
)
print("[ AUTOENCODER TRAINING ]")
plot_training(ae_fit)
plt.savefig(CycleAE_dir+'/training/autoencoder_training.svg')
plt.clf()
# Save the entire model
if not os.path.exists( CycleAE_dir+'/model' ):
os.makedirs( CycleAE_dir+'/model' )
ae.save( CycleAE_dir+'/model' )
#CALCULATE PHASES
predicted_dataset = ae.predict(ae_dataset)
test_input_to_decoder = tf.convert_to_tensor(np.array([np.arange(0,1,step=0.01)]).T )
predicted_decoder_test = decoder(test_input_to_decoder)
distances = distance_matrix(np_data,predicted_decoder_test)
t_closest_theta = tf.convert_to_tensor(np.array([]))
for cell in distances:
dist = list(cell)
t2 = test_input_to_decoder[dist.index(min(dist))]
t_closest_theta = tf.concat([t_closest_theta, t2],0)
t_closest_theta = t_closest_theta*-1+1
adata.obs['cell_cycle_theta'] = t_closest_theta
adata.write_h5ad(output_anndata_file)
print("[Output anndata]:", output_anndata_file)
print("[PRELIMINARY ANALYSIS]")
th=adata.obs['cell_cycle_theta']
minima = min(th)
maxima = max(th)
norm = matplotlib.colors.Normalize(vmin=minima, vmax=maxima)
mapper = cm.ScalarMappable(norm=norm, cmap=cm.coolwarm)
plt.scatter(adata.obsm['X_umap'][:,0],adata.obsm['X_umap'][:,1],c=th,cmap=cm.coolwarm,alpha=0.5)
plt.colorbar(mapper)
plt.savefig(CycleAE_dir+'/umap_cell_cycle_theta.svg')
plt.clf()
flipped_time = np.flip(test_input_to_decoder[:,0])
good_genes = genes
sorted_good_genes = sorted(good_genes)
w = 3
h = (len(sorted_good_genes))//w +1
if (len(sorted_good_genes)) % w >0:
h += 1
fit_dir = CycleAE_dir+'/fits/'
try:
if os.path.exists(fit_dir):
shutil.rmtree(fit_dir, ignore_errors=True)
os.mkdir(fit_dir)
else:
os.mkdir(fit_dir)
except:
print("[ERROR]: Creation of the directory %s failed" % fit_dir)
raise
for gene in sorted_good_genes:
index = genes.index(gene)
fig, ax = plt.subplots()
sns.scatterplot(np_data[:,2*index],np_data[:,2*index+1],alpha=0.1,ax=ax)
sns.kdeplot(np_data[:,2*index],np_data[:,2*index+1],shade=False,cmap="Reds",ax=ax)
ax.plot(predicted_dataset[:,2*index],predicted_dataset[:,2*index+1],'.',alpha=0.05,color='black')
ax.set_title(genes[index])
ax.set_xlabel('spliced (z-score)')
ax.set_ylabel('unspliced (z-score)')
ax.set_aspect(1)
plt.ylim(-5, 5)
plt.xlim(-5, 5)
plt.savefig(fit_dir+gene+'.svg')
plt.clf()
for gene in sorted_good_genes:
index = genes.index(gene)
fig, ax = plt.subplots()
ax.plot(flipped_time,predicted_decoder_test[:,2*index],'.-',alpha=0.5,color='red')
ax.plot(flipped_time,predicted_decoder_test[:,2*index+1],'.-',alpha=0.5,color='green')
ax.set_title(genes[index])
ax.set_xlabel('transcriptional phase')
ax.set_ylabel('expression (z-score)')
plt.ylim(-5, 5)
plt.xlim(-5, 5)
plt.savefig(fit_dir+gene+'_series.svg')
plt.clf()