forked from domingomery/Balu
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Contents.m
324 lines (324 loc) · 17.1 KB
/
Contents.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
% Contents.m
%
% Toolbox: Balu
% Balu Help
%
% Display help information of Balu Toolbox Matlab
%
% D.Mery 2014
% http://dmery.ing.puc.cl
%
% Image processing (im)
% Bim_build + Build image structure for Bio_loadimg
% Bim_color2bwreg + Convert a region to b&w
% Bim_colorenhancement + Enhancement of a color image
% Bim_colorconv + Color space conversion
% Bim_cssalient + Saliency map
% Bim_d1 + First derivative (gradient)
% Bim_d2 + Second derivative (laplacian)
% Bim_deconvolution + Inverse filtering
% Bim_equalization + Equalization forcing uniform histogram
% Bim_fconversion + image format conversion
% Bim_hsi2rgb + Conversion HSI to RGB
% Bim_inthist + Integral histogram
% Bim_inthistread + Integral histogram of a part of an image
% Bim_labparam + Estimation of L*a*b* parameters
% Bim_lin + Lineal enhancement
% Bim_LUT + Grayvalue transformation using lookup table
% Bim_maxmin + Normalization of a image between 0 and 1
% Bim_morphoreg + Morphological operations
% Bim_performance + Precision - recall using real and ideal segmentation
% Bim_regiongrow + Interactive segmentation
% Bim_resminio + Restoration using MINIO criterium
% Bim_rgb2hcm + Conversion RGB to high contrast image
% Bim_rgb2hsi + Conversion RGB to HSI
% Bim_rgb2lab + Conversion RGB to L*a*b* using calibration
% Bim_rgb2lab0 + Conversion RGB to L*a*b* using formulas
% Bim_rgb2pca + Conversion RGB to PCA
% Bim_sat + Saturation of an image
% Bim_segbalu + Segmentation of an object using hci transform
% Bim_segblops + Segmentation of blops
% Bim_segdefects + Segmentation of defects
% Bim_segkmeans + Kmeans Segmentation
% Bim_segmaxfisher + Color segmentacion using Fisher discriminat
% Bim_segmaxvar + Color segmentacion maximizing the variance
% Bim_segmowgli + Segmentation of an object's region
% Bim_segmser + Maximal Stable Energy Region Segmentation
% Bim_segotsu + Otsu Segmentation
% Bim_segpca + Segmentation of an object using pca
% Bim_segsliwin + Segmentation using sliding windows
%
% Feature extraction (fx)
% Bfx_all + (int) grayvalues of all pixels
% Bfx_basicgeo + (geo) Standard geometric features
% Bfx_basicint + (int) Standard intesnity features
% Bfx_build + Construction of a Balu Feature Extraction structure
% Bfx_clp + (int) Crossing line profiles
% Bfx_contrast + (int) Contrast features
% Bfx_dct + (int) DCT features
% Bfx_files + (int & geo) feature extraction from a set of images
% Bfx_fitellipse + (geo) Ellipse features
% Bfx_flusser + (geo) Flusser moments
% Bfx_fourier + (int) Fourier features
% Bfx_fourierdes + (geo) Fourier descriptors
% Bfx_gabor + (int) Gabor texture features
% Bfx_geo + (geo) Geometric features
% Bfx_gui + Graphic user interface for feature extraction
% Bfx_gupta + (geo) Gupta moments
% Bfx_haralick + (int) Haralick texture features
% Bfx_hog + (int) Histogramf of Oriented Gradients
% Bfx_hugeo + (geo) Hu moments
% Bfx_huint + (int) Hu moments with intensity
% Bfx_int + (int) Intensity features
% Bfx_lbp + (int) Local binary pattern texture features (6)
% Bfx_lbpcontrast + (int) Contrast using LBP features
% Bfx_lbhog + (int) LBP and HOG features
% Bfx_moments + (geo) Statistical and central moments
% Bfx_onesift + (int) Extract one sift descriptor of a region
% Bfx_phog + (int) Pyramid Histogram of Oriented Gradients (7)
% Bfx_randomsliwin + (int) fx from random sliding windows
% Bfx_vlhog + (int) HOG using VLfeat Toolbox
%
% Feature transformation (ft)
% Bft_lseft + Transformation using LSEF algorithm
% Bft_norm + Normalization of features
% Bft_pca + Principal Components Analysis
% Bft_pcr + Principal Components Regression
% Bft_plsr + Partial Least Squares Regression (8)
% Bft_uninorm + Norm of each column is one
% Bft_vq + Vector quantization
%
% Feature selection (fs)
% Bfs_all + Dummy selection: it selects all features
% Bfs_balu + Normalize, clean and select features
% Bfs_bb + Branch and Bound feature selection
% Bfs_build + Construction of a Balu Feature Selection structure
% Bfs_clean + Delete high correlated and constant features
% Bfs_exsearch + Feature selection using exhaustive serach
% Bfs_fosmod + Feature Selection using FOS-MOD algorithm
% Bfs_lsef + Feature Selection using LSE-forward algorithm
% Bfs_mRMR + Feature selection after Peng
% Bfs_nobackground + Delete contrast features
% Bfs_noposition + Delete position features
% Bfs_norotation + Delete rotation variant features
% Bfs_random + Select best features from random subsets
% Bfs_rank + Feature selection using command rankfeatures
% Bfs_ransac + Select best features from random samples
% Bfs_sfs + Sequential forward feature selection
% Bfs_sfscorr + SFS for regression problems
%
% Input/Output (io)
% Bio_copyfiles + Copy files of a directory wit a new name
% Bio_decisionline + Line decision for 2 features problem
% Bio_drawellipse + Draw an ellipse
% Bio_edgeview + Edge of an object
% Bio_findex + Index number of a feature for a given string
% Bio_fmtconv + Image format conversion
% Bio_imgshow + Display an image of a sequence
% Bio_labelimage + User interface to label a set of images
% Bio_labelregion + User interface to label regions of an image
% Bio_latextable + Build LateX table
% Bio_loadimg + Load an image of a sequence
% Bio_maillist + Send emails to a mail-list
% Bio_plotfeatures + Feature space
% Bio_plotroc + Plot ROC
% Bio_plotsquare + Square onto an image
% Bio_printfeatures + Feature values
% Bio_regshow + Display a region in a color image
% Bio_segshow + Display image and segmentation with Bim_segbalu
% Bio_sendmail + Send e-mail
% Bio_showconfusion + Show confusion matrix using colormap
% Bio_statusbar + Display progress bar (10)
%
% Data selection & generation (ds)
% Bds_Adasyn + Oversampling method Adasyn
% Bds_bootstrap + Bootstrap sample
% Bds_BorderSMOTE + Oversampling method Border SMOTE
% Bds_CNNRule + Undersampling method CNN rule
% Bds_gaussgen + Generation of Gaussian Data
% Bds_ixstratify + Data Stratification (without replacement)
% Bds_labels + Generation of (supervised) label vector
% Bds_NCLRule + Undersampling method NCL
% Bds_nostratify + Data Sampling without Stratification
% Bds_OSS + Undersampling method OSS
% Bds_ROS + Oversampling method ROS
% Bds_RUS + Undersampling method RUS
% Bds_stratify + Data Stratification
% Bds_smote + Oversampling method SMOTE
% Bds_TomekLinks + Undersampling method TomeLinks
%
% Classification (cl)
% Bcl_adaboost + AdaBoost.M2
% Bcl_AdaboostM1 + AdaBoost.M1
% Bcl_bagging + Bagging
% BclBalanceCasacade + Balance Cascade
% Bcl_balu + Exhaustive Feature & Classifier Selection
% Bcl_bayes2 + Bayes for two features
% Bcl_boosting + Boosting
% Bcl_boostVJ + Viola-Jones boosting
% Bcl_build + Construction of a Balu classifier structure
% Bcl_construct + Inner procedure (not a classifier function)
% Bcl_dcs + Dynamic classifier selection
% Bcl_det21 + Linear Detector for 2 features
% Bcl_det22 + Quardatic Detector for 2 features
% Bcl_dmin + Euclidean minimal distance
% Bcl_EasyEnsemble + Easy Ensemble
% Bcl_ensemble + Ensemble of n classifiers
% Bcl_exe + Execute a Balu classifier
% Bcl_gui + Graphic user interface for model selection
% Bcl_knn + k-nearest neighbors (1)
% Bcl_lda + Linear discriminant analysis
% Bcl_libsvm + SVM using library LIBSVM (9)
% Bcl_maha + Mahalanobis minimal distance
% Bcl_nbnnxi + Naive Bayes Nearest Neighbor for histograms
% Bcl_nnglm + Neural Network (5)
% Bcl_outscore + Function for include score into class vector
% Bcl_pegasos + Pegasos Support Vector Machine (1)
% Bcl_pnn + Probabilistic Neural Network (2)
% Bcl_qda + Quadratic Discriminant Analysis
% Bcl_SMOTEBoost + Smote Boost
% Bcl_structure + Classification using a Balu's structure
% Bcl_svm + Support Vector Machine (4)
% Bcl_svmplus + SVM for 2 or more classes (4)
% Bcl_tree + Decision tree
% Bcl_weakc + Weak Classifier (3)
%
% Feature analysis (fa)
% Bfa_bestcorr + Search best linear correlation
% Bfa_bestcorrn + Search best linear combination correlation
% Bfa_corrsearch + Error estimation of linear or quadratic model
% Bfa_dXi2 + Xi^2 distance between two vectors
% Bfa_gmean + Geometric mean
% Bfa_jfisher + score using Fisher discriminant
% Bfa_kde + Kernel density estimator
% Bfa_kde2d + Kernel density estimator for 2D
% Bfa_miparzen2 + Mutual Information using Parzen window
% Bfa_score + score of a set of features
% Bfa_sp100 + score using sp=100%
% Bfa_sqcorrcoef + Squared-correlation coefficient
% Bfa_vecsimilarity + Normalized scalar product
%
% Clustering (ct)
% Bct_kmeans + Clustering using k-means
% Bct_knngraph2d + KNN graph for 2D
% Bct_meanshift + Clustering using meanshift
% Bct_medoidshift + Clustering using medoidshif
% Bct_neighbor + Neighbor clustering
% Bct_neighbor2D + Neighbor clustering in 2D
% Bct_spectralct + Spectral clustering
%
% Performance evaluation (ev)
% Bev_bootstrap + Bootstrap evaluation
% Bev_bootstrap0632 + Bootstrap 0.632 evaluation
% Bev_confidence + Confidence interval
% Bev_confusion + Confusion Matrix
% Bev_crossval + Cross-validation
% Bev_holdout + Holdout evaluation
% Bev_jackknife + Jackknife
% Bev_performance + Performance evaluation
% Bev_roc + ROC curve
%
% Multi-view analysis (mv)
% Bmv_antisimetric + Antisimetric matrix
% Bmv_bundleafin + Afin bundle adjustment
% Bmv_bundleproj + Projective bundle adjustment
% Bmv_epidist + Epipolar distance
% Bmv_epiplot + Plot of epipolar line
% Bmv_epipoles + Epipoles from fundamental matrix
% Bmv_fundamental + Fundamental matrix F from 2 projection matrices
% Bmv_fundamentalRANSAC + RANSAC estimation of F from projection points
% Bmv_fundamentalSIFT + Estimation of F using SIFT points (1)
% Bmv_fundamentalSVD + SVD estimation of F from projection points
% Bmv_guiproy2D + GUI for projective transformation in 2D
% Bmv_homographyRANSAC + RANSAC estimation of homography matrix H
% Bmv_homographySIFT + Homography of two images using SIFT points (1)
% Bmv_homographySVD + SVD estimation of homography matrix H
% Bmv_line2img + Line to image conversion
% Bmv_lines2point + Intersction of two 2D lines
% Bmv_matchSIFT + Matching points between two images
% Bmv_matrixp + Perspective projection matrix 3D->2D
% Bmv_matrixr2d + Rotation matrix in 2D
% Bmv_matrixr3d + Rotation matrix in 3D
% Bmv_points2line + 2D line l that contains two 2D points
% Bmv_projective2D + 2D projective transformation
% Bmv_reco3d2 + 3D reconstruction in 2 views
% Bmv_reco3dn + 3D reconstruction in n views
% Bmv_reco3dna + 3D affine reconstruction in n views
% Bmv_reproj3 + Reprojection of third view
% Bmv_tqsift + Target - query search using SIFT
% Bmv_trifocal + Trifocal tensors
% Bmv_trifocalSVD + Estimation of Trifocal Tensors using SVD decomposition
%
% Sequence processing (sq)
% Bsq_des + Description of a sequence (1)
% Bsq_fundamental + Fundamental matrices of a sequence (calib)
% Bsq_fundamentalSIFT + Fundamental matrix between two sequence views
% Bsq_load + Load an image sequence
% Bsq_movie + Movie of an image sequence
% Bsq_multifundamental + Fundamental matrices of a sequence (no calib)
% Bsq_patch + Patches of a sequence
% Bsq_show + Display of a sequence
% Bsq_sort + Sort of a sequence (1)
% Bsq_stoplist + Stoplist of a visual vocabulary
% Bsq_stopout + Filtering of stop words
% Bsq_trifocal + Trifocal tensors of a sequence
% Bsq_vgoogle + Search similar sequence images (1)
% Bsq_visualvoc + Visual vocabulary
% Bsq_vocabulary + Visual vocabulary of a sequence (1)
%
% Tracking (tr)
% Btr_2 + Matching in 2 views with epipolar constraint
% Btr_3 + Matching in 3 views with trifocal constraint
% Btr_analysis + Track analysis
% Btr_classify + Track classify using Multi-view windows
% Btr_demo + Track demo: detection using multi-view
% Btr_detection + Detection by tracking
% Btr_gui + Graphic user interface for tracking algorithm
% Btr_join + Join of matching points
% Btr_merge + Merge tracks with common matching points
% Btr_plot + Plot of tracks
% Btr_reco3d + 3D reconstruction of a track
% Btr_sfm + Structure from Motion
% Btr_sfseq + Structure from an image sequence
% Btr_sift2 + Matching keypoints in 2 views of a sequence
% Btr_siftn + Matching keypoints in n views of a sequence
% Btr_windows + Multi-view windows (MVW)
%
% Miscellaneous
% andsift + SIFT descriptors of a region
% clb + clt and delete(Bio_statusbar)
% clt + close all and clear all
% compare + comparison between two variables
% d2Y + conversion from label vector to binary matrix
% distxy + Euclidean distance between vectors of matrices
% eigsort + sorted eigen function
% enterpause + pause with "press enter to continue..."
% i2h + inhomogeneous coordinates to homogeneous
% howis + attributes of a matlab variable
% h2i + homogeneous coordinates to inhomogeneous
% imi + display image I
% imshowc + close all windows before display an image
% imshows + imshows(I) corresponds to imshow(I,[])
% indices + indices of a vector
% max2 + maximum of a matrix
% mean2 + average of a matrix
% min2 + minimum of a matrix
% num2fixstr + num2str using filling with '0' from left
% posrandom + interchange columns of a matrix randomly
% sqdif + mean of Euclidean difference
% sum2 + sum off all elements of a matrix
%
% Notes:
% (1) It requires VLFeat Toolbox (see www.vlfeat.org).
% (2) It requires Neural Network Toolbox (see www.mathworks.com).
% (3) It requires Image Processing Toolbox (see www.mathworks.com).
% (4) It requires Bioinformatics Toolbox (see www.mathworks.com).
% (5) Implementation based on NetLab Toolbox (www.ncrg.aston.ac.uk/netlab).
% (6) Based on implementation by Heikkila & Ahonen
% (from http://www.cse.oulu.fi/MVG/Research/LBP).
% (7) Based on implementation by Anna Bosch
% (from http://www.robots.ox.ac.uk/~vgg/research/caltech/phog.html).
% (8) Based on implementation nipals.m by Geladi
% (from http://www.cdpcenter.org/files/plsr).
% (9) It requires LIBSVM (see http://www.csie.ntu.edu.tw/~cjlin/libsvm/).
%(10) Copyright (c) 2004, Marcel Leutenegger.