-
Notifications
You must be signed in to change notification settings - Fork 7
/
fdr.m
103 lines (91 loc) · 2.39 KB
/
fdr.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
function [Bout, alpha, ErrFro, T, Yr, t] = fdr(Y, ell, a_seed, no_err)
%FDR Find the robust frequent directions of a given matrix A in a
%streaming fashion
%
% Based on work from Liberty et al. and Luo et al.
%
% FD: https://arxiv.org/abs/1501.01711.pdf
% RFD: https://arxiv.org/pdf/1705.05067
%
% Author: Andreas Grammenos (ag926@cl.cam.ac.uk)
%
% Last touched date: 30/12/2018
%
% License: GPLv3
%
fprintf('\n ** Running Robust FD...\n');
% scope in global variables
global use_blk_err
% initialisations
m = 2 * ell;
[~, cols] = size(Y);
Br = zeros(m, cols);
nz_row = 1;
% the number of rows and columns of Y
[numr, numc] = size(Y);
% initialise the identity matrix for the regulariser
Id = eye(numc);
% default block size
blk_size = 100;
cnt = 1;
% default starting alpha value
if nargin < 3
a_seed = 0;
end
% set initial alpha
alpha = 0;
% previous alpha for the gradient
alpha_prev = a_seed;
% no error by default
if nargin < 4
no_err = 1;
end
% initialise error metrics
if use_blk_err == 1
ErrFro = nan(1, floor(numr/blk_size));
T = nan(1, floor(numr/blk_size));
else
ErrFro = nan(1, numr);
T = 1:numr;
end
% start timing
ts = tic;
% loop through matrix
for k = 1:numr
% check if we need to squeeze
if (nz_row >= m)
% squeeze
[Br, nz_row, alpha] = fd_rotate_sketch(Br, ell, alpha_prev);
% update the previous alpha regulariser value
alpha_prev = alpha;
end
% append the current values
Br(nz_row, :) = Y(k, :);
% increment the next zero row counter
nz_row = nz_row + 1;
% calcualte the error, if needed
if no_err == 0
if use_blk_err == 1
if mod(k, blk_size) == 0
y_c = Y(1:k, :);
YrHat_c = y_c*(Br(1:ell, :)'*Br(1:ell, :) + alpha*Id);
temp = sum(sum((y_c-YrHat_c).^2, 1));
ErrFro(cnt) = temp/k;
T(cnt) = k; cnt = cnt + 1;
end
else
% calculate the reconstruction error
y_c = Y(1:k, :);
YrHat_c = y_c*(Br(1:ell, :)'*Br(1:ell, :) + alpha*Id);
temp = sum(sum((y_c-YrHat_c).^2, 1));
ErrFro(k) = temp/k;
end
end
end
% also set the final estimate of Yr
Yr = Y*(Br(1:ell, :)'*Br(1:ell, :) + alpha*Id);
% only return the subset of the sketch that is of value
Bout = Br(1:ell, :);
% calcualte the current trial execution delta
t = my_toc(ts);
end