forked from CogComp/KAIROS-Event-Extraction
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathExtraction_quizlet3.py
65 lines (49 loc) · 2.36 KB
/
Extraction_quizlet3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
from util import *
from document_reader import *
import os
folder_name = '/shared/kairos/Data/LDC2020E30_KAIROS_Quizlet_3_Source_Data_and_Graph_G/data/source/ltf/ltf/'
documents = list()
for tmp_file_name in os.listdir(folder_name):
if 'xml' in tmp_file_name:
extracted_data = ltf_reader(folder_name, tmp_file_name)
documents.append(extracted_data)
# sentences = list()
# for tmp_s in extracted_data['sentences']:
# sentences.append(tmp_s['content'])
# new_file_name = tmp_file_name.replace('.xml', '.txt')
# with open('data/quizlet3/' + new_file_name, 'w', encoding='utf-8') as f:
# for s in sentences:
# f.write(s)
# f.write('\n')
# print('done')
parser = argparse.ArgumentParser()
parser.add_argument("--gpu", default='1', type=str, required=False,
help="choose which gpu to use")
parser.add_argument("--representation_source", default='nyt', type=str, required=False,
help="choose which gpu to use")
parser.add_argument("--model", default='bert-large', type=str, required=False,
help="choose which gpu to use")
parser.add_argument("--pooling_method", default='final', type=str, required=False,
help="choose which gpu to use")
parser.add_argument("--weight", default=100, type=float, required=False,
help="weight assigned to triggers")
parser.add_argument("--argument_matching", default='exact', type=str, required=False,
help="weight assigned to triggers")
parser.add_argument("--eval_model", default='joint', type=str, required=False,
help="weight assigned to triggers")
args = parser.parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print('current device:', device)
test_extractor = CogcompKairosEventExtractor(device)
results = list()
for tmp_document in documents:
print('We are working on document:', tmp_document["doc_id"])
extracted_results = list()
for tmp_s in tqdm(tmp_document['sentences']):
extracted_results.append(test_extractor.extract(tmp_s['content']))
tmp_document['event_extraction_results'] = extracted_results
results.append(tmp_document)
with open('data/quizlet3/data_after_event_extraction.json', 'w') as f:
json.dump(results, f)
print('end')