-
Notifications
You must be signed in to change notification settings - Fork 0
/
linear_regression.py
74 lines (48 loc) · 1.79 KB
/
linear_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import tensorflow as tf
import numpy
import matplotlib.pyplot as plt
rng = numpy.random
#Parameters
learning_rate = 0.01
training_epochs = 1000
display_step = 50
#Training data
train_X = numpy.asarray([3.3,4.4,5.5,6.71,6.93,4.168,9.779,6.182,7.59,2.167,
7.042,10.791,5.313,7.997,5.654,9.27,3.1])
train_Y = numpy.asarray([1.7,2.76,2.09,3.19,1.694,1.573,3.366,2.596,2.53,1.221,
2.827,3.465,1.65,2.904,2.42,2.94,1.3])
n_samples = train_X.shape[0]
# tf Graph Input
X = tf.placeholder("float")
Y = tf.placeholder("float")
# Set model weights
W = tf.Variable(rng.randn(), name="weight")
b = tf.Variable(rng.randn(), name="bias")
# Construct a linear model
pred = tf.add(tf.multiply(X , W), b)
# Mean squared error
cost = tf.reduce_sum(tf.pow(pred -Y, 2))/ (2*n_samples)
#Gradient descent
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
#Intializing the variables
init = tf.global_variables_initializer()
#Launch Graph
with tf.Session() as sess:
sess.run(init)
#Fit all training data
for epoch in range(training_epochs):
for (x, y) in zip(train_X, train_Y):
sess.run(optimizer, feed_dict={X:x , Y:y})
#Display logs per epoch step
if (epoch + 1) % display_step == 0:
c = sess.run(cost , feed_dict={X: train_X, Y: train_Y})
print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(c), \
"W=", sess.run(W), "b=", sess.run(b))
print("Optimization finished!")
training_cost = sess.run(cost, feed_dict={X: train_X, Y: train_Y})
print("Training cost=", training_cost, "W=", sess.run(W), "b=", sess.run(b), '\n')
#Graphic Display
plt.plot(train_X, train_Y, 'ro', label='Orignal data')
plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label = "Fitted Line")
plt.legend()
plt.show()