-
Notifications
You must be signed in to change notification settings - Fork 1
/
utils.py
121 lines (95 loc) · 3.95 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import numpy as np
from collections import namedtuple
import torch
from torch import nn
import torchvision
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
################################################################
## Components from https://github.com/davidcpage/cifar10-fast ##
################################################################
#####################
## data preprocessing
#####################
cifar10_mean = (0.4914, 0.4822, 0.4465) # equals np.mean(train_set.train_data, axis=(0,1,2))/255
cifar10_std = (0.2471, 0.2435, 0.2616) # equals np.std(train_set.train_data, axis=(0,1,2))/255
def normalise(x, mean=cifar10_mean, std=cifar10_std):
x, mean, std = [np.array(a, np.float32) for a in (x, mean, std)]
x -= mean*255
x *= 1.0/(255*std)
return x
def pad(x, border=4):
return np.pad(x, [(0, 0), (border, border), (border, border), (0, 0)], mode='reflect')
def transpose(x, source='NHWC', target='NCHW'):
return x.transpose([source.index(d) for d in target])
#####################
## data augmentation
#####################
class Crop(namedtuple('Crop', ('h', 'w'))):
def __call__(self, x, x0, y0):
return x[:,y0:y0+self.h,x0:x0+self.w]
def options(self, x_shape):
C, H, W = x_shape
return {'x0': range(W+1-self.w), 'y0': range(H+1-self.h)}
def output_shape(self, x_shape):
C, H, W = x_shape
return (C, self.h, self.w)
class FlipLR(namedtuple('FlipLR', ())):
def __call__(self, x, choice):
return x[:, :, ::-1].copy() if choice else x
def options(self, x_shape):
return {'choice': [True, False]}
class Cutout(namedtuple('Cutout', ('h', 'w'))):
def __call__(self, x, x0, y0):
x = x.copy()
x[:,y0:y0+self.h,x0:x0+self.w].fill(0.0)
return x
def options(self, x_shape):
C, H, W = x_shape
return {'x0': range(W+1-self.w), 'y0': range(H+1-self.h)}
class Transform():
def __init__(self, dataset, transforms):
self.dataset, self.transforms = dataset, transforms
self.choices = None
def __len__(self):
return len(self.dataset)
def __getitem__(self, index):
data, labels = self.dataset[index]
for choices, f in zip(self.choices, self.transforms):
args = {k: v[index] for (k,v) in choices.items()}
data = f(data, **args)
return data, labels
def set_random_choices(self):
self.choices = []
x_shape = self.dataset[0][0].shape
N = len(self)
for t in self.transforms:
options = t.options(x_shape)
x_shape = t.output_shape(x_shape) if hasattr(t, 'output_shape') else x_shape
self.choices.append({k:np.random.choice(v, size=N) for (k,v) in options.items()})
#####################
## dataset
#####################
def cifar10(root):
train_set = torchvision.datasets.CIFAR10(root=root, train=True, download=True)
test_set = torchvision.datasets.CIFAR10(root=root, train=False, download=True)
return {
'train': {'data': train_set.data, 'labels': train_set.targets},
'test': {'data': test_set.data, 'labels': test_set.targets}
}
#####################
## data loading
#####################
class Batches():
def __init__(self, dataset, batch_size, shuffle, set_random_choices=False, num_workers=0, drop_last=False):
self.dataset = dataset
self.batch_size = batch_size
self.set_random_choices = set_random_choices
self.dataloader = torch.utils.data.DataLoader(
dataset, batch_size=batch_size, num_workers=num_workers, pin_memory=True, shuffle=shuffle, drop_last=drop_last
)
def __iter__(self):
if self.set_random_choices:
self.dataset.set_random_choices()
return ({'input': x.to(device).half(), 'target': y.to(device).long()} for (x,y) in self.dataloader)
def __len__(self):
return len(self.dataloader)