diff --git a/src/sage/libs/singular/option.pyx b/src/sage/libs/singular/option.pyx index e729255e2d9..f61900da568 100644 --- a/src/sage/libs/singular/option.pyx +++ b/src/sage/libs/singular/option.pyx @@ -28,7 +28,7 @@ this:: sage: with opt_ctx(red_tail=False, red_sb=False): ....: std(I)[-1] - d^2*e^6 + 8*c^3 + ... + d^2*e^6 +...8*c^3 + ... However, this does not affect the global state:: diff --git a/src/sage/rings/polynomial/multi_polynomial_ideal.py b/src/sage/rings/polynomial/multi_polynomial_ideal.py index bb9ee33b86f..f8daa8371b6 100644 --- a/src/sage/rings/polynomial/multi_polynomial_ideal.py +++ b/src/sage/rings/polynomial/multi_polynomial_ideal.py @@ -176,7 +176,7 @@ The Groebner basis modulo any product of the prime factors is also non-trivial:: sage: I.change_ring(P.change_ring(IntegerModRing(2 * 7))).groebner_basis() - [x + 9*y + 13*z, y^2 + 3*y, y*z + 7*y + 6, 2*y + 6, z^2 + 3, 2*z + 10] + [x + ..., y^2 + 3*y, y*z + 7*y + 6, 2*y + 6, z^2 + 3, 2*z + 10] Modulo any other prime the Groebner basis is trivial so there are no other solutions. For example::