-
Notifications
You must be signed in to change notification settings - Fork 0
/
ClassBlender.py
54 lines (38 loc) · 1.8 KB
/
ClassBlender.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
This code blends two classes together as a convex combination; a type of simple data augmentation
"""
from tensorflow.keras.layers import Layer
from tensorflow.keras import backend as K
import tensorflow as tf
import numpy as np
class ClassBlender(Layer):
"""Only active at training time since it is a regularization layer.
# Arguments
attenuation: how much to attenuate the input
# Input shape
Arbitrary.
# Output shape
Same as the input shape.
"""
def __init__(self, attenuation, batch_size, **kwargs):
super(ClassBlender, self).__init__(**kwargs)
self.supports_masking = True
self.attenuation = attenuation
self.batch_size = batch_size
def call(self, inputs, training=None):
def blended():
inputs_permuted = tf.random_shuffle(inputs)
angles = (180*(2*np.random.rand(self.batch_size)-1))*np.pi/180
shifts = 4*(2*np.random.rand(self.batch_size, 2)-1)
inputs_permuted_translated = tf.contrib.image.translate(inputs_permuted, shifts)
inputs_permuted_translated_rotated = tf.contrib.image.rotate(inputs_permuted_translated,angles)
inputs_adjusted = inputs_permuted_translated_rotated
inputs_adjusted = tf.clip_by_value(inputs_adjusted,-0.5,0.5)
return (1.0-self.attenuation)*inputs + self.attenuation*inputs_adjusted
return K.in_train_phase(blended, inputs, training=training)
def get_config(self):
config = {'attenuation': self.attenuation, 'batch_size':self.batch_size}
base_config = super(ClassBlender, self).get_config()
return dict(list(base_config.items()) + list(config.items()))