Skip to content

Data Model, Rollup & Prefix Index

kangpinghuang edited this page Jun 22, 2018 · 13 revisions

Palo 数据模型、ROLLUP 及前缀索引

本文档主要从逻辑层面,描述 Palo 的数据模型 ROLLUP 以及前缀索引的概念,以帮助用户更好的使用 Palo 应对不同的业务场景。

基本概念

在 Palo 中,数据以表(Table)的形式进行逻辑上的描述。
一张表包括行(Row)和列(Column)。Row 即用户的一行数据。Column 用于描述一行数据中不同的字段。

Column 可以分为两大类:Key 和 Value。从业务角度看,Key 和 Value 可以分别对应维度列和指标列。

Palo 的数据模型主要分为3类:

  • Aggregate
  • Uniq
  • Duplicate

下面我们分别介绍。

Aggregate 模型(聚合模型)

我们以实际的例子来说明什么是聚合模型,以及如何正确的使用聚合模型。

示例1:导入数据聚合

假设业务有如下数据表模式:

ColumnName Type AggregationType Comment
user_id LARGEINT 用户id
date DATE 数据灌入日期
city VARCHAR(20) 用户所在城市
age SMALLINT 用户年龄
sex TINYINT 用户性别
last_visit_date DATETIME REPLACE 用户最后一次访问时间
cost BIGINT SUM 用户总消费
max_dwell_time INT MAX 用户最大停留时间
min_dwell_time INT MIN 用户最小停留时间

如果转换成建表语句则如下(省略建表语句中的 Partition 和 Distribution 信息)

CREATE TABLE IF NOT EXISTS example_db.expamle_tbl
(
	`user_id` LARGEINT NOT NULL COMMENT "用户id",
	`date` DATE NOT NULL COMMENT "数据灌入日期时间",
	`city` VARCHAR(20) COMMENT "用户所在城市",
	`age` SMALLINT COMMENT "用户年龄",
	`sex` TINYINT COMMENT "用户性别",
	`last_visit_date` DATETIME REPLACE DEFAULT "1970-01-01 00:00:00" COMMENT "用户最后一次访问时间",
	`cost` BIGINT SUM DEFAULT "0" COMMENT "用户总消费",
	`max_dwell_time` INT MAX DEFAULT "0" COMMENT "用户最大停留时间",
	`min_dwell_time` INT MIN DEFAULT "99999" COMMENT "用户最小停留时间",
)
AGGREGATE KEY(`user_id`, `date`, `timestamp`, `city`, `age`, `sex`)
... /* 省略 Partition 和 Distribution 信息 */
;

可以看到,这是一个典型的用户信息和访问行为的事实表。
在一般星型模型中,用户信息和访问行为一般分别存放在维度表和事实表中。这里我们为了更加方便的解释 Palo 的数据模型,将两部分信息统一存放在一张表中。

表中的列按照是否设置了 AggregationType,分为 Key (维度列) 和 Value(指标列)。没有设置 AggregationType 的,如 user_iddateage ... 等称为 Key,而设置了 AggregationType 的称为 Value

当我们导入数据时,对于 Key 列相同的行和聚合成一行,而 Value 列会按照设置的 AggregationType 进行聚合。 AggregationType 目前有以下四种聚合方式:

  1. SUM:求和,多行的 Value 进行累加。
  2. REPLACE:替代,下一批数据中的 Value 会替换之前导入过的行中的 Value。
  3. MAX:保留最大值。
  4. MIN:保留最小值。

假设我们有以下导入数据(原始数据):

user_id date city age sex last_visit_date cost max_dwell_time min_dwell_time
10000 2017-10-01 北京 20 0 2017-10-01 06:00:00 20 10 10
10000 2017-10-01 北京 20 0 2017-10-01 07:00:00 15 2 2
10001 2017-10-01 北京 30 1 2017-10-01 17:05:45 2 22 22
10002 2017-10-02 上海 20 1 2017-10-02 12:59:12 200 5 5
10003 2017-10-02 广州 32 0 2017-10-02 11:20:00 30 11 11
10004 2017-10-01 深圳 35 0 2017-10-01 10:00:15 100 3 3
10004 2017-10-03 深圳 35 0 2017-10-03 10:20:22 11 6 6

我们假设这是一张记录用户访问某商品页面行为的表。我们以第一行数据为例,解释如下:

数据 说明
10000 用户id,每个用户唯一识别id
2017-10-01 数据入库时间,精确到日期
北京 用户所在城市
20 用户年龄
0 性别男(1 代表女性)
2017-10-01 06:00:00 用户本次访问该页面的时间,精确到秒
20 用户本次访问产生的消费
10 用户本次访问,驻留该页面的时间
10 用户本次访问,驻留该页面的时间(冗余)

那么当这批数据正确导入到 Palo 中后,Palo 中最终存储如下:

user_id date city age sex last_visit_date cost max_dwell_time min_dwell_time
10000 2017-10-01 北京 20 0 2017-10-01 07:00:00 35 10 2
10001 2017-10-01 北京 30 1 2017-10-01 17:05:45 2 22 22
10002 2017-10-02 上海 20 1 2017-10-02 12:59:12 200 5 5
10003 2017-10-02 广州 32 0 2017-10-02 11:20:00 30 11 11
10004 2017-10-01 深圳 35 0 2017-10-01 10:00:15 100 3 3
10004 2017-10-03 深圳 35 0 2017-10-03 10:20:22 11 6 6

可以看到,用户 10000 只剩下了一行聚合后的数据。而其余用户的数据和原始数据保持一致。这里先解释下用户 10000 聚合后的数据:

前5列没有变化,从第6列 last_visit_date 开始:

  • 2017-10-01 07:00:00:因为 last_visit_date 列的聚合方式为 REPLACE,所以 2017-10-01 07:00:00 替换了 2017-10-01 06:00:00 保存了下来。

    注:在同一个导入批次中的数据,对于 REPLACE 这种聚合方式,替换顺序不做保证。如在这个例子中,最终保存下来的,也有可能是 2017-10-01 06:00:00。而对于不同导入批次中的数据,可以保证,后一批次的数据会替换前一批次。

  • 35:因为 cost 列的聚合类型为 SUM,所以由 20 + 15 累加获得 35。

  • 10:因为 max_dwell_time 列的聚合类型为 MAX,所以 10 和 2 取最大值,获得 10。

  • 2:因为 min_dwell_time 列的聚合类型为 MIN,所以 10 和 2 取最小值,获得 2。

经过聚合,Palo 中最终只会存储聚合后的数据。换句话说,即明细数据会丢失,用户不能够再查询到聚合前的明细数据了。

示例2:保留明细数据

接示例1,我们将表结构修改如下:

ColumnName Type AggregationType Comment
user_id LARGEINT 用户id
date DATE 数据灌入日期
timestamp DATETIME 数据灌入时间,精确到秒
city VARCHAR(20) 用户所在城市
age SMALLINT 用户年龄
sex TINYINT 用户性别
last_visit_date DATETIME REPLACE 用户最后一次访问时间
cost BIGINT SUM 用户总消费
max_dwell_time INT MAX 用户最大停留时间
min_dwell_time INT MIN 用户最小停留时间

即增加了一列 timestamp,记录精确到秒的数据灌入时间。

导入数据如下:

user_id date timestamp city age sex last_visit_date cost max_dwell_time min_dwell_time
10000 2017-10-01 2017-10-01 08:00:05 北京 20 0 2017-10-01 06:00:00 20 10 10
10000 2017-10-01 2017-10-01 09:00:05 北京 20 0 2017-10-01 07:00:00 15 2 2
10001 2017-10-01 2017-10-01 18:12:10 北京 30 1 2017-10-01 17:05:45 2 22 22
10002 2017-10-02 2017-10-02 13:10:00 上海 20 1 2017-10-02 12:59:12 200 5 5
10003 2017-10-02 2017-10-02 13:15:00 广州 32 0 2017-10-02 11:20:00 30 11 11
10004 2017-10-01 2017-10-01 12:12:48 深圳 35 0 2017-10-01 10:00:15 100 3 3
10004 2017-10-03 2017-10-03 12:38:20 深圳 35 0 2017-10-03 10:20:22 11 6 6

那么当这批数据正确导入到 Palo 中后,Palo 中最终存储如下:

user_id date timestamp city age sex last_visit_date cost max_dwell_time min_dwell_time
10000 2017-10-01 2017-10-01 08:00:05 北京 20 0 2017-10-01 06:00:00 20 10 10
10000 2017-10-01 2017-10-01 09:00:05 北京 20 0 2017-10-01 07:00:00 15 2 2
10001 2017-10-01 2017-10-01 18:12:10 北京 30 1 2017-10-01 17:05:45 2 22 22
10002 2017-10-02 2017-10-02 13:10:00 上海 20 1 2017-10-02 12:59:12 200 5 5
10003 2017-10-02 2017-10-02 13:15:00 广州 32 0 2017-10-02 11:20:00 30 11 11
10004 2017-10-01 2017-10-01 12:12:48 深圳 35 0 2017-10-01 10:00:15 100 3 3
10004 2017-10-03 2017-10-03 12:38:20 深圳 35 0 2017-10-03 10:20:22 11 6 6

我们可以看到,存储的数据,和导入数据完全一样,没有发生任何聚合。这是因为,这批数据中,因为加入了 timestamp 列,所有行的 Key 都不完全相同。也就是说,只要保证导入的数据中,每一行的 Key 都不完全相同,那么即使在聚合模型下,Palo 也可以保存完整的明细数据。

示例3:导入数据与已有数据聚合

接示例1。假设现在表中已有数据如下:

user_id date city age sex last_visit_date cost max_dwell_time min_dwell_time
10000 2017-10-01 北京 20 0 2017-10-01 07:00:00 35 10 2
10001 2017-10-01 北京 30 1 2017-10-01 17:05:45 2 22 22
10002 2017-10-02 上海 20 1 2017-10-02 12:59:12 200 5 5
10003 2017-10-02 广州 32 0 2017-10-02 11:20:00 30 11 11
10004 2017-10-01 深圳 35 0 2017-10-01 10:00:15 100 3 3
10004 2017-10-03 深圳 35 0 2017-10-03 10:20:22 11 6 6

我们再导入一批新的数据:

user_id date city age sex last_visit_date cost max_dwell_time min_dwell_time
10004 2017-10-03 深圳 35 0 2017-10-03 11:22:00 44 19 19
10005 2017-10-03 长沙 29 1 2017-10-03 18:11:02 3 1 1

那么当这批数据正确导入到 Palo 中后,Palo 中最终存储如下:

user_id date city age sex last_visit_date cost max_dwell_time min_dwell_time
10000 2017-10-01 北京 20 0 2017-10-01 07:00:00 35 10 2
10001 2017-10-01 北京 30 1 2017-10-01 17:05:45 2 22 22
10002 2017-10-02 上海 20 1 2017-10-02 12:59:12 200 5 5
10003 2017-10-02 广州 32 0 2017-10-02 11:20:00 30 11 11
10004 2017-10-01 深圳 35 0 2017-10-01 10:00:15 100 3 3
10004 2017-10-03 深圳 35 0 2017-10-03 11:22:00 55 19 6
10005 2017-10-03 长沙 29 1 2017-10-03 18:11:02 3 1 1

可以看到,用户 10004 的已有数据和新导入的数据发生了聚合。同时新增了 10005 用户的数据。

数据的聚合,在 Palo 中有如下三个阶段发生:

  1. 每一批次数据导入的 ETL 阶段。该阶段会在每一批次导入的数据内部进行聚合。
  2. 底层 BE 进行数据 Compaction 的阶段。该阶段,BE 会对已导入的不同批次的数据进行进一步的聚合。
  3. 数据查询阶段。在数据查询时,对于查询涉及到的数据,会进行对应的聚合。

数据在不同时间,可能聚合的程度不一致。比如一批数据刚导入时,可能还未与之前已存在的数据进行聚合。但是对于用户而言,用户只能查询到聚合后的数据。即不同的聚合程度对于用户查询而言是透明的。用户需始终认为数据以最终的完成的聚合程度存在,而不应假设某些聚合还未发生。(可参阅聚合模型的局限性一节获得更多详情。)

Uniq 模型(唯一主键)

在某些多维分析场景下,用户更关注的是如何保证 Key 的唯一性,即如何获得 Primary Key 唯一性约束。因此,我们引入了 Uniq 的数据模型。该模型本质上是聚合模型的一个特例,也是一种简化的表结构表示方式。我们举例说明。

ColumnName Type IsKey Comment
user_id BIGINT Yes 用户id
username VARCHAR(50) Yes 用户昵称
city VARCHAR(20) No 用户所在城市
age SMALLINT No 用户年龄
sex TINYINT No 用户性别
phone LARGEINT No 用户电话
address VARCHAR(500) No 用户住址
register_time DATETIME No 用户注册时间

这是一个典型的用户基础信息表。这类数据没有聚合需求,只需保证主键唯一性。(这里的主键为 user_id + username)。那么我们的建表语句如下:

CREATE TABLE IF NOT EXISTS example_db.expamle_tbl
(
	`user_id` LARGEINT NOT NULL COMMENT "用户id",
	`username` VARCHAR(50) NOT NULL COMMENT "用户昵称",
	`city` VARCHAR(20) COMMENT "用户所在城市",
	`age` SMALLINT COMMENT "用户年龄",
	`sex` TINYINT COMMENT "用户性别",
	`phone` LARGEINT COMMENT "用户电话",
	`address` VARCHAR(500) COMMENT "用户地址",
	`register_time` DATETIME COMMENT "用户注册时间"
)
UNIQUE KEY(`user_id`, `user_name`)
... /* 省略 Partition 和 Distribution 信息 */
;

而这个表结构,完全同等于以下使用聚合模型描述的表结构:

ColumnName Type AggregationType Comment
user_id BIGINT 用户id
username VARCHAR(50) 用户昵称
city VARCHAR(20) REPLACE 用户所在城市
age SMALLINT REPLACE 用户年龄
sex TINYINT REPLACE 用户性别
phone LARGEINT REPLACE 用户电话
address VARCHAR(500) REPLACE 用户住址
register_time DATETIME REPLACE 用户注册时间

及建表语句:

CREATE TABLE IF NOT EXISTS example_db.expamle_tbl
(
	`user_id` LARGEINT NOT NULL COMMENT "用户id",
	`username` VARCHAR(50) NOT NULL COMMENT "用户昵称",
	`city` VARCHAR(20) REPLACE COMMENT "用户所在城市",
	`age` SMALLINT REPLACE COMMENT "用户年龄",
	`sex` TINYINT REPLACE COMMENT "用户性别",
	`phone` LARGEINT REPLACE COMMENT "用户电话",
	`address` VARCHAR(500) REPLACE COMMENT "用户地址",
	`register_time` DATETIME REPLACE COMMENT "用户注册时间"
)
AGGREGATE KEY(`user_id`, `user_name`)
... /* 省略 Partition 和 Distribution 信息 */
;

即 Uniq 模型完全可以用聚合模型中的 REPLACE 方式替代。其内部的实现方式和数据存储方式也完全一样。这里不再继续举例说明。

Duplicate 模型(冗余模型)

在某些多维分析场景下,数据既没有主键,也没有聚合需求。因此,我们引入 Duplicate 数据模型来满足这类需求。举例说明。

ColumnName Type SortKey Comment
timestamp DATETIME Yes 日志时间
type INT Yes 日志类型
error_code INT Yes 错误码
error_msg VARCHAR(1024) No 错误详细信息
op_id BIGINT No 负责人id
op_time DATETIME No 处理时间

建表语句如下:

CREATE TABLE IF NOT EXISTS example_db.expamle_tbl
(
	`timestamp` DATETIME NOT NULL COMMENT "日志时间",
	`type` INT NOT NULL COMMENT "日志类型",
	`error_code` INT COMMENT "错误码",
	`error_msg` VARCHAR(1024) COMMENT "错误详细信息",
	`op_id` BIGINT COMMENT "负责人id",
	`op_time` DATETIME COMMENT "处理时间"
)
DUPLICATE KEY(`timestamp`, `type`)
... /* 省略 Partition 和 Distribution 信息 */
;

这种数据模型区别于 Aggregate 和 Uniq 模型。数据完全按照导入文件中的数据进行存储,不会有任何聚合。即使两行数据完全相同,也都会保留。 而在建表语句中指定的 DUPLICATE KEY,只是用来指明底层数据按照那些列进行排序。(更贴切的名称应该为 “Sorted Column”,这里取名 “DUPLICATE KEY” 只是用以明确表示所用的数据模型。关于 “Sorted Column”的更多解释,可以参阅前缀索引小节)。在 DUPLICATE KEY 的选择上,我们建议适当的选择前 2-4 列就可以。

这种数据模型适用于既没有聚合需求,又没有主键唯一性约束的原始数据的存储。更多使用场景,可参阅聚合模型的局限性小节。

ROLLUP

ROLLUP 在多维分析中是“上卷”的意思,即将数据按某种指定的粒度进行进一步聚合。

基本概念

在 Palo 中,我们将用户通过建表语句创建出来的表成为 Base 表(Base Table)。Base 表中保存着按用户建表语句指定的方式存储的基础数据。

在 Base 表之上,我们可以创建任意多个 ROLLUP 表。这些 ROLLUP 的数据是基于 Base 表产生的,并且在物理上是独立存储的。

ROLLUP 表的基本作用,在于在 Base 表的基础上,获得更粗粒度的聚合数据。

下面我们用示例详细说明在不同数据模型中的 ROLLUP 表及其作用。

Aggregate 和 Uniq 模型中的 ROLLUP

因为 Uniq 只是 Aggregate 模型的一个特例,所以这里我们不加以区别。

  1. 示例1:获得每个用户的总消费

    Aggregate 模型小节的示例2,Base 表结构如下:

    ColumnName Type AggregationType Comment
    user_id LARGEINT 用户id
    date DATE 数据灌入日期
    timestamp DATETIME 数据灌入时间,精确到秒
    city VARCHAR(20) 用户所在城市
    age SMALLINT 用户年龄
    sex TINYINT 用户性别
    last_visit_date DATETIME REPLACE 用户最后一次访问时间
    cost BIGINT SUM 用户总消费
    max_dwell_time INT MAX 用户最大停留时间
    min_dwell_time INT MIN 用户最小停留时间

    存储的数据如下:

    user_id date timestamp city age sex last_visit_date cost max_dwell_time min_dwell_time
    10000 2017-10-01 2017-10-01 08:00:05 北京 20 0 2017-10-01 06:00:00 20 10 10
    10000 2017-10-01 2017-10-01 09:00:05 北京 20 0 2017-10-01 07:00:00 15 2 2
    10001 2017-10-01 2017-10-01 18:12:10 北京 30 1 2017-10-01 17:05:45 2 22 22
    10002 2017-10-02 2017-10-02 13:10:00 上海 20 1 2017-10-02 12:59:12 200 5 5
    10003 2017-10-02 2017-10-02 13:15:00 广州 32 0 2017-10-02 11:20:00 30 11 11
    10004 2017-10-01 2017-10-01 12:12:48 深圳 35 0 2017-10-01 10:00:15 100 3 3
    10004 2017-10-03 2017-10-03 12:38:20 深圳 35 0 2017-10-03 10:20:22 11 6 6

    在此基础上,我们创建一个 ROLLUP:

    |ColumnName| |---|---| |user_id| |cost|

    该 ROLLUP 只包含两列:user_id 和 cost。则创建完成后,该 ROLLUP 中存储的数据如下:

    user_id cost
    10000 35
    10001 2
    10002 200
    10003 30
    10004 111

    可以看到,ROLLUP 中仅保留了每个 user_id,在 cost 列上的 SUM 的结果。那么当我们进行如下查询时:

    SELECT user_id, sum(cost) FROM table GROUP BY user_id;

    Palo 会自动命中这个 ROLLUP 表,从而只需扫描极少的数据量,即可完成这次聚合查询。

  2. 示例2:获得不同城市,不同年龄段用户的总消费、最长和最短页面驻留时间

    紧接示例1。我们在 Base 表基础之上,再创建一个 ROLLUP:

    ColumnName Type AggregationType Comment
    city VARCHAR(20) 用户所在城市
    age SMALLINT 用户年龄
    cost BIGINT SUM 用户总消费
    max_dwell_time INT MAX 用户最大停留时间
    min_dwell_time INT MIN 用户最小停留时间

    则创建完成后,该 ROLLUP 中存储的数据如下:

    city age cost max_dwell_time min_dwell_time
    北京 20 0 30 10
    北京 30 1 2 22
    上海 20 1 200 5
    广州 32 0 30 11
    深圳 35 0 111 6

    当我们进行如下这些查询时:

    • SELECT city, age, sum(cost), max(max_dwell_time), min(min_dwell_time) FROM table GROUP BY city, age;
    • SELECT city, sum(cost), max(max_dwell_time), min(min_dwell_time) FROM table GROUP BY city;
    • SELECT city, age, sum(cost), min(min_dwell_time) FROM table GROUP BY city, age;

    Palo 会自动命中这个 ROLLUP 表。

Duplicate 模型中的 ROLLUP

因为 Duplicate 模型没有聚合的语意。所以该模型中的 ROLLUP,已经失去了“上卷”这一层含义。而仅仅是作为调整列顺序,以命中前缀索引的作用。我们将在接下来的小节中,详细介绍前缀索引,以及如何使用ROLLUP改变前缀索引,以获得更好的查询效率。

前缀索引与 ROLLUP

前缀索引

不同于传统的数据库设计,Palo 不支持在任意列上创建索引。Palo 这类 MPP 架构的 OLAP 数据库,通常都是通过提高并发,来处理大量数据的。
本质上,Palo 的数据存储在类似 SSTable(Sorted String Table)的数据结构中。该结构是一种有序的数据结构,可以按照指定的列进行排序存储。在这种数据结构上,以排序列作为条件进行查找,会非常的高效。

在 Aggregate、Uniq 和 Duplicate 三种数据模型中。底层的数据存储,是按照各自建表语句中,AGGREGATE KEY、UNIQ KEY 和 DUPLICATE KEY 中指定的列进行排序存储的。

而前缀索引,即在排序的基础上,实现的一种根据给定前缀列,快速查询数据的索引方式。

我们将一行数据的前 36 个字节 作为这行数据的前缀索引。当遇到 VARCHAR 类型时,前缀索引会直接截断。我们举例说明:

  1. 以下表结构的前缀索引为 user_id(8Byte) + age(8Bytes) + message(prefix 20 Bytes)。

    ColumnName Type
    user_id BIGINT
    age INT
    message VARCHAR(100)
    max_dwell_time DATETIME
    min_dwell_time DATETIME
  2. 以下表结构的前缀索引为 user_name(20 Bytes)。即使没有达到 36 个字节,因为遇到 VARCHAR,所以直接截断,不再往后继续。

    ColumnName Type
    user_name VARCHAR(20)
    age INT
    message VARCHAR(100)
    max_dwell_time DATETIME
    min_dwell_time DATETIME

当我们的查询条件,是前缀索引的前缀时,可以极大的加快查询速度。比如在第一个例子中,我们执行如下查询:

SELECT * FROM table WHERE user_id=1829239 and age=20;

该查询的效率会远高于如下查询:

SELECT * FROM table WHERE age=20;

所以在建表时,正确的选择列顺序,能够极大地提高查询效率

ROLLUP 调整前缀索引

因为建表时已经指定了列顺序,所以一个表只有一种前缀索引。这对于使用其他不能命中前缀索引的列作为条件进行的查询来说,效率上可能无法满足需求。因此,我们可以通过创建 ROLLUP 来人为的调整列顺序。举例说明。

Base 表结构如下:

ColumnName Type
user_id BIGINT
age INT
message VARCHAR(100)
max_dwell_time DATETIME
min_dwell_time DATETIME

我们可以在此基础上创建一个 ROLLUP 表:

ColumnName Type
age INT
user_id BIGINT
message VARCHAR(100)
max_dwell_time DATETIME
min_dwell_time DATETIME

可以看到,ROLLUP 和 Base 表的列完全一样,只是将 user_id 和 age 的顺序调换了。那么当我们进行如下查询时:

SELECT * FROM table where age=20 and massage LIKE "%error%";

会优先选择 ROLLUP 表,因为 ROLLUP 的前缀索引匹配度更高。

ROLLUP 的几点说明

  • ROLLUP 最根本的作用是提高某些查询的查询效率(无论是通过聚合来减少数据量,还是修改列顺序以匹配前缀索引)。因此 ROLLUP 的含义已经超出了 “上卷” 的范围。这也是为什么我们在源代码中,将其命名为 Materized Index(物化索引)的原因。
  • ROLLUP 是附属于 Base 表的,可以看做是 Base 表的一种辅助数据结构。用户可以在 Base 表的基础上,创建或删除 ROLLUP,但是不能在查询中显式的指定查询某 ROLLUP。是否命中 ROLLUP 完全由 Palo 系统自动决定。
  • ROLLUP 的数据是独立物理存储的。因此,创建的 ROLLUP 越多,占用的磁盘空间也就越大。同时对导入速度也会有影响(导入的ETL阶段会自动产生所有 ROLLUP 的数据),但是不会降低查询效率(只会更好)。
  • ROLLUP 的数据更新与 Base 表示完全同步的。用户无需关心这个问题。
  • ROLLUP 中列的聚合方式,与 Base 表完全相同。在创建 ROLLUP 无需指定,也不能修改。
  • 查询能否命中 ROLLUP 的一个必要条件(非充分条件)是,查询所涉及的所有列(包括 select list 和 where 中的查询条件列等)都存在于该 ROLLUP 的列中。否则,查询只能命中 Base 表。
  • 某些类型的查询(如 count(*))在任何条件下,都无法命中 ROLLUP。具体参见接下来的 聚合模型的局限性 一节。
  • 可以通过 EXPLAIN your_sql; 命令获得查询执行计划,在执行计划中,查看是否命中 ROLLUP。
  • 可以通过 DESC tbl_name ALL; 语句显示 Base 表和所有已创建完成的 ROLLUP。

聚合模型的局限性

这里我们针对 Aggregate 模型(包括 Uniq 模型),来介绍下聚合模型的局限性。

在聚合模型中,模型对外展现的,是最终聚合后的数据。也就是说,任何还未聚合的数据(比如说两个不同导入批次的数据),必须通过某种方式,以保证对外展示的一致性。我们举例说明。

假设表结构如下:

ColumnName Type AggregationType Comment
user_id LARGEINT 用户id
date DATE 数据灌入日期
cost BIGINT SUM 用户总消费

假设存储引擎中有如下两个已经导入完成的批次的数据:

batch 1

user_id date cost
10001 2017-11-20 50
10002 2017-11-21 39

batch 2

user_id date cost
10001 2017-11-20 1
10001 2017-11-21 5
10003 2017-11-22 22

可以看到,用户 10001 分属在两个导入批次中的数据还没有聚合。但是为了保证用户只能查询到如下最终聚合后的数据:

user_id date cost
10001 2017-11-20 51
10001 2017-11-21 5
10002 2017-11-21 39
10003 2017-11-22 22

我们在查询引擎中加入了聚合算子,来保证数据对外的一致性。

另外,在聚合列(Value)上,执行与聚合类型不一致的聚合类查询时,要注意语意。比如我们在如上示例中执行如下查询:

SELECT MIN(cost) FROM table;

得到的结果是 5,而不是 1。

同时,这种一致性保证,在某些查询中,会极大的降低查询效率。

我们以最基本的 count(*) 查询为例:

SELECT COUNT(*) FROM table;

在其他数据库中,这类查询都会很快的返回结果。因为在实现上,我们可以通过如“导入时对行进行计数,保存count的统计信息”,或者在查询时“仅扫描某一列数据,获得count值”的方式,只需很小的开销,即可获得查询结果。但是在 Palo 的聚合模型中,这种查询的开销非常大

我们以刚才的数据为例:

batch 1

user_id date cost
10001 2017-11-20 50
10002 2017-11-21 39

batch 2

user_id date cost
10001 2017-11-20 1
10001 2017-11-21 5
10003 2017-11-22 22

因为最终的聚合结果为:

user_id date cost
10001 2017-11-20 51
10001 2017-11-21 5
10002 2017-11-21 39
10003 2017-11-22 22

所以,select count(*) from table; 的正确结果应该为 4。但如果我们只扫描 user_id 这一列,如果加上查询时聚合,最终得到的结果是 3(10001, 10002, 10003)。而如果不加查询时聚合,则得到的结果是 5(两批次一共5行数据)。可见这两个结果都是不对的。

为了得到正确的结果,我们必须同时读取 user_iddate 这两列的数据,再加上查询时聚合,才能返回 4 这个正确的结果。也就是说,在 count(*) 查询中,Palo 必须扫描所有的 AGGREGATE KEY 列(这里就是 user_iddate),并且聚合后,才能得到语意正确的结果。当聚合列非常多时,count(*) 查询需要扫描大量的数据。

因此,当业务上有频繁的 count(*) 查询时,我们建议用户通过增加一个值衡为 1 的,聚合类型为 SUM 的列来模拟 count(*)。如刚才的例子中的表结构,我们修改如下:

ColumnName Type AggreateType Comment
user_id BIGINT 用户id
date DATE 数据灌入日期
cost BIGINT SUM 用户总消费
count BIGINT SUM 用于计算count

增加一个 count 列,并且导入数据中,该列值衡为 1。则 select count(*) from table; 的结果等价于 select sum(count) from table;。而后者的查询效率将远高于前者。

Duplicate 模型

Duplicate 模型没有聚合模型的这个局限性。因为该模型不涉及聚合语意,在做 count(*) 查询时,任意选择一列查询,即可得到语意正确的结果。

数据模型的选择建议

因为数据模型在建表时就已经确定,且无法修改。所以,选择一个合适的数据模型非常重要

  1. Aggregate 模型可以通过预聚合,极大地降低聚合查询时所需扫描的数据量和查询的计算量,非常适合有固定模式的报表类查询场景。但是该模型对 count(*) 查询很不友好。同时因为固定了 Value 列上的聚合方式,在进行其他类型的聚合查询时,需要考虑语意正确性。
  2. Uniq 模型针对需要唯一主键约束的场景,可以保证主键唯一性约束。但是无法利用 ROLLUP 等预聚合带来的查询优势(因为本质是 REPLACE,没有 SUM 这种聚合方式)。
  3. Duplicate 适合任意维度的 Ad-hoc 查询。虽然同样无法利用预聚合的特性,但是不受聚合模型的约束,可以发挥列存模型的优势(只读取相关列,而不需要读取所有 Key 列)。