From 41e260d084d50d4c65ba7c71da43fe01badad443 Mon Sep 17 00:00:00 2001 From: zmeihui Date: Mon, 11 Sep 2023 10:08:23 +0800 Subject: [PATCH] Add autograd implementation for dynamic model creation --- .../ms_model_mlp/native.py | 137 ++++++++++++++++++ 1 file changed, 137 insertions(+) create mode 100644 examples/model_selection_psql/ms_model_mlp/native.py diff --git a/examples/model_selection_psql/ms_model_mlp/native.py b/examples/model_selection_psql/ms_model_mlp/native.py new file mode 100644 index 000000000..a82ec3b24 --- /dev/null +++ b/examples/model_selection_psql/ms_model_mlp/native.py @@ -0,0 +1,137 @@ +# +# Licensed to the Apache Software Foundation (ASF) under one +# or more contributor license agreements. See the NOTICE file +# distributed with this work for additional information +# regarding copyright ownership. The ASF licenses this file +# to you under the Apache License, Version 2.0 (the +# "License"); you may not use this file except in compliance +# with the License. You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, +# software distributed under the License is distributed on an +# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY +# KIND, either express or implied. See the License for the +# specific language governing permissions and limitations +# under the License. +# + +from singa import tensor +from singa.tensor import Tensor +from singa import autograd +from singa import opt +import numpy as np +from singa import device +import argparse + +np_dtype = {"float16": np.float16, "float32": np.float32} + +singa_dtype = {"float16": tensor.float16, "float32": tensor.float32} + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument('-p', + choices=['float32', 'float16'], + default='float32', + dest='precision') + parser.add_argument('-m', + '--max-epoch', + default=1001, + type=int, + help='maximum epochs', + dest='max_epoch') + args = parser.parse_args() + + np.random.seed(0) + + autograd.training = True + + # prepare training data in numpy array + + # generate the boundary + f = lambda x: (5 * x + 1) + bd_x = np.linspace(-1.0, 1, 200) + bd_y = f(bd_x) + + # generate the training data + x = np.random.uniform(-1, 1, 400) + y = f(x) + 2 * np.random.randn(len(x)) + + # convert training data to 2d space + label = np.asarray([5 * a + 1 > b for (a, b) in zip(x, y)]) + data = np.array([[a, b] for (a, b) in zip(x, y)], dtype=np.float32) + + def to_categorical(y, num_classes): + """ + Converts a class vector (integers) to binary class matrix. + + Args: + y: class vector to be converted into a matrix + (integers from 0 to num_classes). + num_classes: total number of classes. + + Returns: + A binary matrix representation of the input. + """ + y = np.array(y, dtype="int") + n = y.shape[0] + categorical = np.zeros((n, num_classes)) + categorical[np.arange(n), y] = 1 + return categorical + + label = to_categorical(label, 2).astype(np.float32) + print("train_data_shape:", data.shape) + print("train_label_shape:", label.shape) + + precision = singa_dtype[args.precision] + np_precision = np_dtype[args.precision] + + dev = device.create_cuda_gpu() + + inputs = Tensor(data=data, device=dev) + target = Tensor(data=label, device=dev) + + inputs = inputs.as_type(precision) + target = target.as_type(tensor.int32) + + w0_np = np.random.normal(0, 0.1, (2, 3)).astype(np_precision) + w0 = Tensor(data=w0_np, + device=dev, + dtype=precision, + requires_grad=True, + stores_grad=True) + b0 = Tensor(shape=(3,), + device=dev, + dtype=precision, + requires_grad=True, + stores_grad=True) + b0.set_value(0.0) + + w1_np = np.random.normal(0, 0.1, (3, 2)).astype(np_precision) + w1 = Tensor(data=w1_np, + device=dev, + dtype=precision, + requires_grad=True, + stores_grad=True) + b1 = Tensor(shape=(2,), + device=dev, + dtype=precision, + requires_grad=True, + stores_grad=True) + b1.set_value(0.0) + + sgd = opt.SGD(0.05, 0.8) + + # training process + for i in range(args.max_epoch): + x = autograd.matmul(inputs, w0) + x = autograd.add_bias(x, b0) + x = autograd.relu(x) + x = autograd.matmul(x, w1) + x = autograd.add_bias(x, b1) + loss = autograd.softmax_cross_entropy(x, target) + sgd(loss) + + if i % 100 == 0: + print("%d, training loss = " % i, tensor.to_numpy(loss)[0])