-
Notifications
You must be signed in to change notification settings - Fork 0
/
segway_input_master.py
865 lines (666 loc) · 31.3 KB
/
segway_input_master.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
from __future__ import absolute_import, division
"""input_master.py: write input master files
"""
__version__ = "$Revision$"
## Copyright 2012, 2013 Michael M. Hoffman <michael.hoffman@utoronto.ca>
from math import frexp, ldexp
from string import Template
import sys
from genomedata._util import fill_array
from numpy import (array, empty, float32, outer, set_printoptions, sqrt, tile,
vectorize, where, zeros)
from six.moves import map, range
from ._util import (copy_attrs, data_string, DISTRIBUTION_GAMMA,
DISTRIBUTION_NORM, DISTRIBUTION_ASINH_NORMAL,
OFFSET_END, OFFSET_START, OFFSET_STEP,
resource_substitute, Saver, SEGWAY_ENCODING,
SUPERVISION_UNSUPERVISED,
SUPERVISION_SEMISUPERVISED,
SUPERVISION_SUPERVISED, USE_MFSDG,
VIRTUAL_EVIDENCE_LIST_FILENAME)
from .gen_gmtk_params import InputMaster, NameCollection, DenseCPT, \
DeterministicCPT, DPMF, MC, MX, Covar, Mean, generate_gmtk_obj_names
# NB: Currently Segway relies on older (Numpy < 1.14) printed representations of
# scalars and vectors in the parameter output. By default in newer (> 1.14)
# versions printed output "giv[es] the shortest unique representation".
# See Numpy 1.14 release notes: https://docs.scipy.org/doc/numpy/release.html
# Under heading 'Many changes to array printing, disableable with the new
# "legacy" printing mode'
try:
# If it is a possibility, use the older printing style
set_printoptions(legacy='1.13')
except TypeError:
# Otherwise ignore the attempt
pass
if USE_MFSDG:
# because tying not implemented yet
COVAR_TIED = False
else:
COVAR_TIED = True
ABSOLUTE_FUDGE = 0.001
# define the pseudocount for training the mixture distribution weights
GAUSSIAN_MIXTURE_WEIGHTS_PSEUDOCOUNT = 100
# here to avoid duplication
NAME_SEGCOUNTDOWN_SEG_SEGTRANSITION = "segCountDown_seg_segTransition"
CARD_SEGTRANSITION = 3
# XXX: should be options
LEN_SEG_EXPECTED = 100000
LEN_SUBSEG_EXPECTED = 100
JITTER_ORDERS_MAGNITUDE = 5 # log10(2**5) = 1.5 decimal orders of magnitude
DISTRIBUTIONS_LIKE_NORM = frozenset([DISTRIBUTION_NORM,
DISTRIBUTION_ASINH_NORMAL])
# Number of digits for rounding input.master means.
# This allows consistency between Python 2 and Python 3
# TODO[PY2-EOL]: remove
ROUND_NDIGITS = 12
input_master = InputMaster()
def vstack_tile(array_like, *reps):
reps = list(reps) + [1]
return tile(array_like, reps)
def array2text(a):
ndim = a.ndim
if ndim == 1:
return " ".join(map(str, a))
else:
delimiter = "\n" * (ndim - 1)
return delimiter.join(array2text(row) for row in a)
def make_spec(name, iterable):
"""
name: str, name of GMTK object type
iterable: iterable of strs
"""
items = list(iterable)
header_lines = ["%s_IN_FILE inline" % name, str(len(items)), ""]
indexed_items = ["%d %s" % indexed_item
for indexed_item in enumerate(items)]
all_lines = header_lines + indexed_items
# In Python 2, convert from unicode to bytes to prevent
# __str__method from being called twice
# Specifically in the string template standard library provided by Python
# 2, there is a call to a string escape sequence + tuple, e.g.:
# print("%s" % (some_string,))
# This "some_string" has its own __str__ method called *twice* if if it is
# a unicode string in Python 2. Python 3 does not have this issue. This
# causes downstream issues since strings are generated often in our case
# for random numbers. Calling __str__ twice will often cause re-iterating
# the RNG which makes for inconsitent results between Python versions.
if sys.version[0] == "2":
all_lines = [line.encode(SEGWAY_ENCODING) for line in all_lines]
return "\n".join(all_lines) + "\n"
def prob_transition_from_expected_len(length):
# formula from Meta-MEME paper, Grundy WN et al. CABIOS 13:397
# see also Reynolds SM et al. PLoS Comput Biol 4:e1000213
# ("duration modeling")
return length / (1 + length)
def make_zero_diagonal_table(length):
if length == 1:
return array([1.0]) # always return to self
prob_self_self = 0.0
prob_self_other = (1.0 - prob_self_self) / (length - 1)
# set everywhere (diagonal to be rewritten)
res = fill_array(prob_self_other, (length, length))
# set diagonal
range_cpt = range(length)
res[range_cpt, range_cpt] = prob_self_self
return res
def format_indexed_strs(fmt, num):
full_fmt = fmt + "%d"
return [full_fmt % index for index in range(num)]
def jitter_cell(cell, random_state):
"""
adds some random noise
"""
# get the binary exponent and subtract JITTER_ORDERS_MAGNITUDE
# e.g. 3 * 2**10 --> 1 * 2**5
max_noise = ldexp(1, frexp(cell)[1] - JITTER_ORDERS_MAGNITUDE)
return cell + random_state.uniform(-max_noise, max_noise)
jitter = vectorize(jitter_cell)
class ParamSpec(object):
"""
base class for parameter specifications used in input.master files
"""
type_name = None
object_tmpl = None
copy_attrs = ["distribution", "mins", "num_segs", "num_subsegs",
"num_track_groups", "track_groups", "num_mix_components",
"means", "vars", "num_mix_components", "random_state", "tracks"]
jitter_std_bound = 0.2
track_names = []
def __init__(self, saver):
# copy all variables from saver that it copied from Runner
# XXX: override in subclasses to only copy subset
copy_attrs(saver, self, self.copy_attrs)
self.track_names = []
#print(self.tracks)
for track in self.tracks:
# print(track)
self.track_names.append(track.name)
#print("track_names", self.track_names)
def make_segnames(self):
return format_indexed_strs("seg", self.num_segs)
def make_subsegnames(self):
return format_indexed_strs("subseg", self.num_subsegs)
def make_data(self):
"""
override this in subclasses
returns: container indexed by (seg_index, subseg_index, track_index)
"""
return None
def get_track_lt_min(self, track_index):
"""
returns a value less than a minimum in a track
"""
# XXX: refactor into a new function
min_track = self.mins[track_index]
# fudge the minimum by a very small amount. this is not
# continuous, but hopefully we won't get values where it
# matters
# XXX: restore this after GMTK issues fixed
# if min_track == 0.0:
# min_track_fudged = FUDGE_TINY
# else:
# min_track_fudged = min_track - ldexp(abs(min_track), FUDGE_EP)
# this happens for really big numbers or really small
# numbers; you only have 7 orders of magnitude to play
# with on a float32
min_track_f32 = float32(min_track)
assert min_track_f32 - float32(ABSOLUTE_FUDGE) != min_track_f32
return min_track - ABSOLUTE_FUDGE
# def make_segnames(self):
# return format_indexed_strs("seg", self.num_segs)
#
# def make_subsegnames(self):
# return format_indexed_strs("subseg", self.num_subsegs)
def get_template_component_suffix(self, component_number):
"""Returns the subsitution for the component suffix in the GMTK model
template. Empty if there is only one component"""
if self.num_mix_components == 1:
return ""
else:
return "_component{}".format(component_number)
def generate_tmpl_mappings(self):
# need segnames because in the tied covariance case, the
# segnames are replaced by "any" (see .make_covar_spec()),
# and only one mapping is produced
#print("gen tmpl mapping used")
num_subsegs = self.num_subsegs
track_groups = self.track_groups
num_track_groups = self.num_track_groups
for seg_index, segname in enumerate(self.make_segnames()):
seg_offset = num_track_groups * num_subsegs * seg_index
for subseg_index, subsegname in enumerate(self.make_subsegnames()):
subseg_offset = seg_offset + (num_track_groups * subseg_index)
for track_group_index, track_group in enumerate(track_groups):
track_offset = subseg_offset + track_group_index
head_trackname = track_group[0].name
# XXX: change name of index to track_offset in templates
# XXX: change name of track_index to track_group_index
yield dict(seg=segname, subseg=subsegname,
track=head_trackname, seg_index=seg_index,
subseg_index=subseg_index,
track_index=track_group_index,
index=track_offset,
distribution=self.distribution)
# def make_data(self):
# """
# override this in subclasses
# returns: container indexed by (seg_index, subseg_index, track_index)
# """
# return None
def generate_objects(self):
"""
returns: iterable of strs containing GMTK parameter objects starting
with names
"""
#print("gen objs being used")
substitute = Template(self.object_tmpl).substitute
data = self.make_data()
for mapping in self.generate_tmpl_mappings():
track_index = mapping["track_index"]
if self.distribution == DISTRIBUTION_GAMMA:
mapping["min_track"] = self.get_track_lt_min(track_index)
if data is not None:
seg_index = mapping["seg_index"]
subseg_index = mapping["subseg_index"]
mapping["datum"] = data[seg_index, subseg_index, track_index]
yield substitute(mapping)
def __str__(self):
return make_spec(self.type_name, self.generate_objects())
def generate_name_collection(self):
collection_names = generate_gmtk_obj_names(obj="col",
track_names=self.track_names, num_segs=self.num_segs,
num_subsegs=self.num_subsegs, distribution=self.distribution,
num_mix_components=self.num_mix_components)
names = generate_gmtk_obj_names("mx_name",
track_names=self.track_names, num_segs=self.num_segs,
num_subsegs=self.num_subsegs, distribution=self.distribution,
num_mix_components=self.num_mix_components)
num_tracks = len(self.track_names)
len_name_group = int(len(names) / num_tracks)
name_groups = [names[i:i + len_name_group] for i in range(0, len(names), len_name_group)]
for group_index in range(len(name_groups)):
name_col = NameCollection(collection_names[group_index],
name_groups[group_index])
input_master.update(name_col)
return input_master.generate_name_col()
def make_mean_data(self):
num_segs = self.num_segs
num_subsegs = self.num_subsegs
means = self.means # indexed by track_index
# maximum likelihood, adjusted by no more than 0.2*sd
stds = sqrt(self.vars)
# tile the means of each track (num_segs, num_subsegs times)
means_tiled = vstack_tile(means, num_segs, num_subsegs)
stds_tiled = vstack_tile(stds, num_segs, num_subsegs)
jitter_std_bound = self.jitter_std_bound
noise = self.random_state.uniform(-jitter_std_bound,
jitter_std_bound, stds_tiled.shape)
return means_tiled + (stds_tiled * noise)
def generate_mean_objects(self):
names = generate_gmtk_obj_names("mean",
track_names=self.track_names, num_segs=self.num_segs,
num_subsegs=self.num_subsegs, distribution=self.distribution,
num_mix_components=self.num_mix_components)
means = self.make_mean_data().tolist()
for i in range(len(names)):
mean_obj = Mean(names[i], means[i])
input_master.update(mean_obj)
return input_master.generate_mean()
def generate_covar_objects(self):
if not COVAR_TIED:
names = generate_gmtk_obj_names("covar",
track_names=self.track_names, num_segs=self.num_segs,
num_subsegs=self.num_subsegs, distribution=self.distribution,
num_mix_components=self.num_mix_components)
else:
names = generate_gmtk_obj_names("tied_covar",
track_names=self.track_names, num_segs=self.num_segs,
num_subsegs=self.num_subsegs, distribution=self.distribution,
num_mix_components=self.num_mix_components)
covars = self.vars.tolist()
for i in range(len(names)):
covar_obj = Covar(names[i], covars[i])
input_master.update(covar_obj)
return input_master.generate_covar()
def generate_real_mat_objects(self):
pass
def generate_mc_objects(self):
if self.distribution in DISTRIBUTIONS_LIKE_NORM:
if USE_MFSDG:
# TODO
option = "mc_missing"
else:
option = "mc_diag"
names = generate_gmtk_obj_names(option,
track_names=self.track_names, num_segs=self.num_segs,
num_subsegs=self.num_subsegs, distribution=self.distribution,
num_mix_components=self.num_mix_components)
covars = list(input_master.covar.values())* (self.num_segs * self.num_subsegs)
#print(input_master.mean.values(), covars)
for i in range(len(names)):
mc_obj = MC(name=names[i], dim=1, type="COMPONENT_TYPE_DIAG_GAUSSIAN",
mean=list(input_master.mean.values())[i], covar=covars[i])
input_master.update(mc_obj)
elif self.distribution == DISTRIBUTION_GAMMA:
option = "mc_gamma"
names = generate_gmtk_obj_names(option,
track_names=self.track_names, num_segs=self.num_segs,
num_subsegs=self.num_subsegs, distribution=self.distribution,
num_mix_components=self.num_mix_components)
gamma_scale = generate_gmtk_obj_names("gammascale",
track_names=self.track_names, num_segs=self.num_segs,
num_subsegs=self.num_subsegs, distribution=self.distribution,
num_mix_components=self.num_mix_components)
gamma_shape = generate_gmtk_obj_names("gammashape",
track_names=self.track_names, num_segs=self.num_segs,
num_subsegs=self.num_subsegs, distribution=self.distribution,
num_mix_components=self.num_mix_components)
for i in range(len(names)):
mc_obj = MC(name=names[i], dim=1, type="COMPONENT_TYPE_GAMMA",
gamma_shape=gamma_shape[i], gamma_scale=gamma_scale[i])
input_master.update(mc_obj)
return input_master.generate_mc()
def generate_mx_objects(self):
names = generate_gmtk_obj_names("mx",
track_names=self.track_names, num_segs=self.num_segs,
num_subsegs=self.num_subsegs, distribution=self.distribution,
num_mix_components=self.num_mix_components)
#mc_names = []
#for key in input_master.mc:
# mc_names.append(input_master.mc[key].name)
#print("mc names", mc_names)
mc_obj = list(input_master.mc.values())
#dpmf_names = []
#for key in input_master.dpmf:
# dpmf_names.append(input_master.dpmf[key].name)
dpmf_obj = list(input_master.dpmf.values())
multiple = int(len(names)/len(dpmf_obj))
dpmf_obj *= multiple
#print("mx dpmf", dpmf_obj)
for i in range(len(names)):
# print('index', i)
mx_obj = MX(name=names[i], dim=1, dpmf=dpmf_obj[i],
components=mc_obj[i])
input_master.update(mx_obj)
return input_master.generate_mx()
def generate_dpmf_objects(self):
names = generate_gmtk_obj_names("dpmf",
track_names=self.track_names, num_segs=self.num_segs,
num_subsegs=self.num_subsegs, distribution=self.distribution,
num_mix_components=self.num_mix_components)
#print("dpmf_names", names)
#print(self.num_mix_components)
if self.num_mix_components == 1:
# print("if dpmf")
dpmf_obj = DPMF(names[0], 1.0)
# print("create dpmf", dpmf_obj)
input_master.update(dpmf_obj)
else:
dpmf_values = str(round(1.0 / self.num_mix_components,
ROUND_NDIGITS))
# print("else dpmf")
for i in range(len(names)):
dpmf_obj = DPMF(names[i], dpmf_values[i])
input_master.update(dpmf_obj)
return input_master.generate_dpmf()
def generate_ve(self):
pass
def make_start_seg(self):
name = "start_seg"
card = self.num_segs
prob = fill_array(1.0 / self.num_segs, self.num_segs)
start_seg = DenseCPT(name=name, cardinality=card, prob=prob)
input_master.update(start_seg)
def make_seg_subseg(self):
name = "seg_subseg"
parent_card = self.num_segs # TODO check
card = self.num_subseg # TODO check
prob = fill_array(1.0 / self.num_subsegs, (self.num_segs,
self.num_subsegs))
seg_subseg = DenseCPT(name=name, parent_card=parent_card,
cardinality=card, prob=prob)
input_master.update(seg_subseg)
def make_seg_seg(self):
name = "seg_seg"
parent_card = self.num_segs # TODO check
card = self.num_segs # TODO check
prob = make_zero_diagonal_table(self.num_segs)
# TODO check
seg_seg = DenseCPT(name, parent_card, card, prob)
input_master.update(seg_seg)
def make_seg_subseg_subseg(self):
name = "seg_subseg_subseg"
# parent_card =
cpt_seg = make_zero_diagonal_table(self.num_subsegs)
cpt = vstack_tile(cpt_seg, self.num_segs, 1)
seg_subseg_subseg = DenseCPT()
def make_dinucleotide_table_row(self):
pass
def make_seg_dinucleotide(self):
pass
def make_segCountDown_seg_segTransition(self):
name = "segCountDown_seg_segTransition"
# parent_card =
# card =
pass
def generate_objects(self):
pass
class DTParamSpec(ParamSpec):
type_name = "DT"
copy_attrs = ParamSpec.copy_attrs + ["seg_countdowns_initial",
"supervision_type"]
def make_segCountDown_tree_spec(self, resourcename): # noqa
num_segs = self.num_segs
seg_countdowns_initial = self.seg_countdowns_initial
header = ([str(num_segs)] +
[str(num_seg) for num_seg in range(num_segs - 1)] +
["default"])
lines = [" ".join(header)]
for seg, seg_countdown_initial in enumerate(seg_countdowns_initial):
lines.append(" -1 %d" % seg_countdown_initial)
tree = "\n".join(lines)
return resource_substitute(resourcename)(tree=tree)
def make_map_seg_segCountDown_dt_spec(self): # noqa
return self.make_segCountDown_tree_spec("map_seg_segCountDown.dt.tmpl")
def make_map_segTransition_ruler_seg_segCountDown_segCountDown_dt_spec(self): # noqa
template_name = \
"map_segTransition_ruler_seg_segCountDown_segCountDown.dt.tmpl"
return self.make_segCountDown_tree_spec(template_name)
def generate_objects(self):
yield data_string("map_frameIndex_ruler.dt.txt")
yield self.make_map_seg_segCountDown_dt_spec()
yield self.make_map_segTransition_ruler_seg_segCountDown_segCountDown_dt_spec() # noqa
yield data_string("map_seg_subseg_obs.dt.txt")
supervision_type = self.supervision_type
if supervision_type == SUPERVISION_SEMISUPERVISED:
yield data_string("map_supervisionLabel_seg_alwaysTrue_semisupervised.dt.txt") # noqa
elif supervision_type == SUPERVISION_SUPERVISED:
# XXX: does not exist yet
yield data_string("map_supervisionLabel_seg_alwaysTrue_supervised.dt.txt") # noqa
else:
assert supervision_type == SUPERVISION_UNSUPERVISED
class VirtualEvidenceSpec(ParamSpec):
type_name = "VE_CPT"
# According to GMTK specification (tksrc/GMTK_VECPT.cc)
# this should be of the format:
# CPT_name num_par par_card self_card VE_CPT_FILE
# nfs:nfloats nis:nints ... fmt:obsformat ... END
object_tmpl = "seg_virtualEvidence 1 %s 2 %s nfs:%s nis:0 fmt:ascii END"
copy_attrs = ParamSpec.copy_attrs + ["virtual_evidence", "num_segs"]
def make_virtual_evidence_spec(self):
return self.object_tmpl % (self.num_segs, VIRTUAL_EVIDENCE_LIST_FILENAME, self.num_segs)
def generate_objects(self):
yield self.make_virtual_evidence_spec()
class TableParamSpec(ParamSpec):
copy_attrs = ParamSpec.copy_attrs \
+ ["resolution", "card_seg_countdown", "seg_table",
"seg_countdowns_initial"]
# see Segway paper
probs_force_transition = array([0.0, 0.0, 1.0])
def make_table_spec(self, name, table, ndim, extra_rows=[]):
header_rows = [name, ndim]
header_rows.extend(table.shape)
rows = [" ".join(map(str, header_rows))]
rows.extend(extra_rows)
rows.extend([array2text(table), ""])
return "\n".join(rows)
def calc_prob_transition(self, length):
"""Calculate probability transition from scaled expected length.
"""
length_scaled = length // self.resolution
prob_self_self = prob_transition_from_expected_len(length_scaled)
prob_self_other = 1.0 - prob_self_self
return prob_self_self, prob_self_other
def make_dense_cpt_segCountDown_seg_segTransition(self): # noqa
# first values are the ones where segCountDown = 0 therefore
# the transitions to segTransition = 2 occur early on
card_seg_countdown = self.card_seg_countdown
# by default, when segCountDown is high, never transition
res = empty((card_seg_countdown, self.num_segs, CARD_SEGTRANSITION))
prob_seg_self_self, prob_seg_self_other = \
self.calc_prob_transition(LEN_SEG_EXPECTED)
prob_subseg_self_self, prob_subseg_self_other = \
self.calc_prob_transition(LEN_SUBSEG_EXPECTED)
# 0: no transition
# 1: subseg transition (no transition when CARD_SUBSEG == 1)
# 2: seg transition
probs_allow_transition = \
array([prob_seg_self_self * prob_subseg_self_self,
prob_seg_self_self * prob_subseg_self_other,
prob_seg_self_other])
probs_prevent_transition = array([prob_subseg_self_self,
prob_subseg_self_other,
0.0])
# find the labels with maximum segment lengths and those without
table = self.seg_table
ends = table[:, OFFSET_END]
bitmap_without_maximum = ends == 0
# where() returns a tuple; this unpacks it
labels_with_maximum, = where(~bitmap_without_maximum)
labels_without_maximum, = where(bitmap_without_maximum)
# labels without a maximum
res[0, labels_without_maximum] = probs_allow_transition
res[1:, labels_without_maximum] = probs_prevent_transition
# labels with a maximum
seg_countdowns_initial = self.seg_countdowns_initial
res[0, labels_with_maximum] = self.probs_force_transition
for label in labels_with_maximum:
seg_countdown_initial = seg_countdowns_initial[label]
minimum = table[label, OFFSET_START] // table[label, OFFSET_STEP]
seg_countdown_allow = seg_countdown_initial - minimum + 1
res[1:seg_countdown_allow, label] = probs_allow_transition
res[seg_countdown_allow:, label] = probs_prevent_transition
return res
@staticmethod
def make_dirichlet_name(name):
return "dirichlet_%s" % name
class DenseCPTParamSpec(TableParamSpec):
type_name = "DENSE_CPT"
copy_attrs = TableParamSpec.copy_attrs \
+ ["random_state", "len_seg_strength", "use_dinucleotide"]
def make_table_spec(self, name, table, dirichlet=False):
"""
if dirichlet is True, this table has a corresponding DirichletTable
automatically generated name
"""
ndim = table.ndim - 1 # don't include output dim
if dirichlet:
extra_rows = ["DirichletTable %s" % self.make_dirichlet_name(name)]
else:
extra_rows = []
return TableParamSpec.make_table_spec(self, name, table, ndim,
extra_rows)
def make_empty_cpt(self):
num_segs = self.num_segs
return zeros((num_segs, num_segs))
def make_dense_cpt_start_seg_spec(self):
num_segs = self.num_segs
cpt = fill_array(1.0 / num_segs, num_segs)
return self.make_table_spec("start_seg", cpt)
def make_dense_cpt_seg_subseg_spec(self):
num_subsegs = self.num_subsegs
cpt = fill_array(1.0 / num_subsegs, (self.num_segs, num_subsegs))
return self.make_table_spec("seg_subseg", cpt)
def make_dense_cpt_seg_seg_spec(self):
cpt = make_zero_diagonal_table(self.num_segs)
return self.make_table_spec("seg_seg", cpt)
def make_dense_cpt_seg_subseg_subseg_spec(self):
cpt_seg = make_zero_diagonal_table(self.num_subsegs)
cpt = vstack_tile(cpt_seg, self.num_segs, 1)
return self.make_table_spec("seg_subseg_subseg", cpt)
def make_dinucleotide_table_row(self):
# simple one-parameter model
gc = self.random_state.uniform()
at = 1 - gc
a = at / 2
c = gc / 2
g = gc - c
t = 1 - a - c - g
acgt = array([a, c, g, t])
# shape: (16,)
return outer(acgt, acgt).ravel()
def make_dense_cpt_seg_dinucleotide_spec(self):
table = [self.make_dinucleotide_table_row()
for seg_index in range(self.num_segs)]
return self.make_table_spec("seg_dinucleotide", table)
def make_dense_cpt_segCountDown_seg_segTransition_spec(self): # noqa
cpt = self.make_dense_cpt_segCountDown_seg_segTransition()
return self.make_table_spec(NAME_SEGCOUNTDOWN_SEG_SEGTRANSITION, cpt,
dirichlet=self.len_seg_strength > 0)
def generate_objects(self):
yield self.make_dense_cpt_start_seg_spec()
yield self.make_dense_cpt_seg_subseg_spec()
yield self.make_dense_cpt_seg_seg_spec()
yield self.make_dense_cpt_seg_subseg_subseg_spec()
yield self.make_dense_cpt_segCountDown_seg_segTransition_spec()
if self.use_dinucleotide:
yield self.make_dense_cpt_seg_dinucleotide_spec()
class RealMatParamSpec(ParamSpec):
type_name = "REAL_MAT"
def generate_objects(self):
yield "matrix_weightscale_1x1 1 1 1.0"
class GammaRealMatParamSpec(RealMatParamSpec):
scale_tmpl = "gammascale_${seg}_${subseg}_${track} 1 1 ${datum}"
shape_tmpl = "gammashape_${seg}_${subseg}_${track} 1 1 ${datum}"
copy_attrs = ParamSpec.copy_attrs \
+ ["means", "random_state", "vars"]
def generate_objects(self):
means = self.means
vars = self.vars
substitute_scale = Template(self.scale_tmpl).substitute
substitute_shape = Template(self.shape_tmpl).substitute
# random start values are equivalent to the random start
# values of a Gaussian:
#
# means = scales * shapes
# vars = shapes * scales**2
#
# therefore:
scales = vars / means
shapes = (means ** 2) / vars
for mapping in self.generate_tmpl_mappings():
track_index = mapping["track_index"]
scale = jitter(scales[track_index], self.random_state)
yield substitute_scale(dict(datum=scale, **mapping))
shape = jitter(shapes[track_index], self.random_state)
yield substitute_shape(dict(datum=shape, **mapping))
class InputMasterSaver(Saver):
resource_name = "input.master.tmpl"
copy_attrs = ["num_bases", "num_segs", "num_subsegs",
"num_track_groups", "card_seg_countdown",
"seg_countdowns_initial", "seg_table", "distribution",
"len_seg_strength", "resolution", "random_state", "supervision_type",
"use_dinucleotide", "mins", "means", "vars",
"gmtk_include_filename_relative", "track_groups",
"num_mix_components", "virtual_evidence", "tracks"]
def make_mapping(self):
# the locals of this function are used as the template mapping
# use caution before deleting or renaming any variables
# check that they are not used in the input.master template
param_spec = ParamSpec(self)
num_free_params = 0
num_segs = self.num_segs
num_subsegs = self.num_subsegs
num_track_groups = self.num_track_groups
fullnum_subsegs = num_segs * num_subsegs
include_filename = self.gmtk_include_filename_relative
dt_spec = DTParamSpec(self)
#if self.len_seg_strength > 0:
# dirichlet_spec = DirichletTabParamSpec(self)
#else:
# dirichlet_spec = ""
dense_cpt_spec = DenseCPTParamSpec(self)
# seg_seg
num_free_params += fullnum_subsegs * (fullnum_subsegs - 1)
# segCountDown_seg_segTransition
num_free_params += fullnum_subsegs
name_collection_spec = param_spec.generate_name_collection()
distribution = self.distribution
if distribution in DISTRIBUTIONS_LIKE_NORM:
mean_spec = param_spec.generate_mean_objects()
covar_spec = param_spec.generate_covar_objects()
if USE_MFSDG:
real_mat_spec = RealMatParamSpec(self)
else:
real_mat_spec = ""
mc_spec = param_spec.generate_mc_objects()
if COVAR_TIED:
num_free_params += (fullnum_subsegs + 1) * num_track_groups
else:
num_free_params += (fullnum_subsegs * 2) * num_track_groups
elif distribution == DISTRIBUTION_GAMMA:
mean_spec = ""
covar_spec = ""
# XXX: another option is to calculate an ML estimate for
# the gamma distribution rather than the ML estimate for the
# mean and converting
real_mat_spec = GammaRealMatParamSpec(self)
mc_spec = param_spec.generate_mc_objects()
num_free_params += (fullnum_subsegs * 2) * num_track_groups
else:
raise ValueError("distribution %s not supported" % distribution)
dpmf_spec = param_spec.generate_dpmf_objects()
mx_spec = param_spec.generate_mx_objects()
card_seg = num_segs
ve_spec = VirtualEvidenceSpec(self)
return locals() # dict of vars set in this function