-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathtrain-pytorch-simple.py
125 lines (99 loc) · 4.7 KB
/
train-pytorch-simple.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
#
# For licensing see accompanying LICENSE.txt file.
# Copyright (C) 2018-2019 Apple Inc. All Rights Reserved.
#
from __future__ import print_function
import argparse
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as nnf
from torch.autograd import Variable
# local imports for graphing / dataloading / basic layers
from code_pytorch.utils import softmax_accuracy
from code_pytorch.grid_loader import GridDataLoader, set_sample_spec
from code_pytorch.typenet import TypeNet
from allpairs.grid_generator import SampleSpec
parser = argparse.ArgumentParser(description='Typenet')
# Task parameters
parser.add_argument('--max-train-samples', type=int, default=100000000)
parser.add_argument('--num-top-features', type=int, default=64)
# grid parameters
parser.add_argument('--num-pairs', type=str, default=4)
parser.add_argument('--num-classes', type=str, default=4)
# Model parameters
parser.add_argument('--batch-size', type=int, default=400)
parser.add_argument('--activations', nargs='+', default=['softmax', 'softmax'], type=str)
parser.add_argument('--lr', type=float, default=1e-3)
# Device parameters
parser.add_argument('--ngpu', type=int, default=1)
parser.add_argument('--no-cuda', action='store_true', default=False)
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
def train(num_trained_on, model, optimizer, data_loader, loss_function=nnf.cross_entropy):
""" Note: nnf.cross_entropy is like softmax_cross_entropy_with_logits """
model.train()
for batch_idx, (data, target) in enumerate(data_loader.train_loader):
def op(index_of_batch, batch_data, batch_target):
if args.cuda:
batch_data, batch_target = batch_data.cuda(), batch_target.cuda().squeeze()
batch_data, batch_target = Variable(batch_data), Variable(batch_target)
optimizer.zero_grad()
# compute loss
predictions = model(batch_data)
loss = loss_function(predictions, batch_target)
loss.backward()
optimizer.step()
# log every nth interval
if index_of_batch % 20 == 0:
correct = softmax_accuracy(predictions, batch_target)
num_samples = num_trained_on + index_of_batch * len(batch_data)
percent_complete = float(num_samples) / args.max_train_samples
batch_progress = 100.0 * index_of_batch / len(data_loader.train_loader)
print('{}: {}% {}%, Loss: {:.6f} Acc: {:.4f}'.format(
num_samples, percent_complete, batch_progress, loss.data[0], correct))
op(batch_idx, data, target)
def test(model, data_loader, loss_function=nnf.cross_entropy):
""" Note: nnf.cross_entropy is like softmax_cross_entropy_with_logits """
model.eval()
test_loss = 0.0
correct = 0
loader = data_loader.test_loader
for data, target in loader:
if args.cuda:
data, target = data.cuda(), target.cuda().squeeze()
data, target = Variable(data, volatile=True), Variable(target)
predictions = model(data)
loss_t = loss_function(predictions, target)
test_loss += loss_t.data[0]
# compute accuracy
correct += softmax_accuracy(predictions, target, size_average=False)
test_loss /= len(loader) # loss function already averages over batch size
correct_percent = 100.0 * correct / len(loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {:.2f}%\n'.format(test_loss, correct_percent))
def get_data_loader():
""" helper to return the data loader """
im_dim = [76, 96][int(args.num_pairs) > 5]
set_sample_spec(int(args.num_pairs), int(args.num_classes), im_dim=im_dim)
batches_per_epoch = 50000 // args.batch_size
print("{} batches of {} in effective epoch of {} size".format(batches_per_epoch, args.batch_size, 50000))
loader = GridDataLoader(batch_size=args.batch_size, batches_per_epoch=batches_per_epoch)
return loader
def run():
data = get_data_loader()
typenet = TypeNet(data.img_shp, data.output_size, args.num_top_features, activations=args.activations)
if args.ngpu > 1: # parallelize across multiple GPU's
typenet = nn.DataParallel(typenet)
if args.cuda: # push to cuda
typenet = typenet.cuda()
# main training loop
optimizer = optim.Adam(typenet.parameters(), lr=args.lr)
num_trained_on = 0
while num_trained_on < args.max_train_samples:
train(num_trained_on, typenet, optimizer, data)
num_trained_on += args.batch_size
test(typenet, data)
# close all the generators, needed to deal with multi-process generators
SampleSpec.close_generators()
if __name__ == "__main__":
run()