-
Notifications
You must be signed in to change notification settings - Fork 1
/
ettm1_s.log
740 lines (738 loc) · 29.4 KB
/
ettm1_s.log
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
Dataset: ETTm1
Arguments: Namespace(alpha=0.0005, archive='forecast_csv_univar', batch_size=128, dataset='ETTm1', epochs=None, eval=True, gpu=3, iters=None, kernels=[1, 2, 4, 8, 16, 32, 64, 128], lr=0.001, max_threads=8, max_train_length=201, repr_dims=320, run_name='forecast_univar', save_every=None, seed=0)
input_fc.weight [8, 64] Place(gpu:3)
input_fc.bias [64] Place(gpu:3)
feature_extractor.net.0.conv1.conv.weight [64, 64, 3] Place(gpu:3)
feature_extractor.net.0.conv1.conv.bias [64] Place(gpu:3)
feature_extractor.net.0.conv2.conv.weight [64, 64, 3] Place(gpu:3)
feature_extractor.net.0.conv2.conv.bias [64] Place(gpu:3)
feature_extractor.net.1.conv1.conv.weight [64, 64, 3] Place(gpu:3)
feature_extractor.net.1.conv1.conv.bias [64] Place(gpu:3)
feature_extractor.net.1.conv2.conv.weight [64, 64, 3] Place(gpu:3)
feature_extractor.net.1.conv2.conv.bias [64] Place(gpu:3)
feature_extractor.net.2.conv1.conv.weight [64, 64, 3] Place(gpu:3)
feature_extractor.net.2.conv1.conv.bias [64] Place(gpu:3)
feature_extractor.net.2.conv2.conv.weight [64, 64, 3] Place(gpu:3)
feature_extractor.net.2.conv2.conv.bias [64] Place(gpu:3)
feature_extractor.net.3.conv1.conv.weight [64, 64, 3] Place(gpu:3)
feature_extractor.net.3.conv1.conv.bias [64] Place(gpu:3)
feature_extractor.net.3.conv2.conv.weight [64, 64, 3] Place(gpu:3)
feature_extractor.net.3.conv2.conv.bias [64] Place(gpu:3)
feature_extractor.net.4.conv1.conv.weight [64, 64, 3] Place(gpu:3)
feature_extractor.net.4.conv1.conv.bias [64] Place(gpu:3)
feature_extractor.net.4.conv2.conv.weight [64, 64, 3] Place(gpu:3)
feature_extractor.net.4.conv2.conv.bias [64] Place(gpu:3)
feature_extractor.net.5.conv1.conv.weight [64, 64, 3] Place(gpu:3)
feature_extractor.net.5.conv1.conv.bias [64] Place(gpu:3)
feature_extractor.net.5.conv2.conv.weight [64, 64, 3] Place(gpu:3)
feature_extractor.net.5.conv2.conv.bias [64] Place(gpu:3)
feature_extractor.net.6.conv1.conv.weight [64, 64, 3] Place(gpu:3)
feature_extractor.net.6.conv1.conv.bias [64] Place(gpu:3)
feature_extractor.net.6.conv2.conv.weight [64, 64, 3] Place(gpu:3)
feature_extractor.net.6.conv2.conv.bias [64] Place(gpu:3)
feature_extractor.net.7.conv1.conv.weight [64, 64, 3] Place(gpu:3)
feature_extractor.net.7.conv1.conv.bias [64] Place(gpu:3)
feature_extractor.net.7.conv2.conv.weight [64, 64, 3] Place(gpu:3)
feature_extractor.net.7.conv2.conv.bias [64] Place(gpu:3)
feature_extractor.net.8.conv1.conv.weight [64, 64, 3] Place(gpu:3)
feature_extractor.net.8.conv1.conv.bias [64] Place(gpu:3)
feature_extractor.net.8.conv2.conv.weight [64, 64, 3] Place(gpu:3)
feature_extractor.net.8.conv2.conv.bias [64] Place(gpu:3)
feature_extractor.net.9.conv1.conv.weight [64, 64, 3] Place(gpu:3)
feature_extractor.net.9.conv1.conv.bias [64] Place(gpu:3)
feature_extractor.net.9.conv2.conv.weight [64, 64, 3] Place(gpu:3)
feature_extractor.net.9.conv2.conv.bias [64] Place(gpu:3)
feature_extractor.net.10.conv1.conv.weight [320, 64, 3] Place(gpu:3)
feature_extractor.net.10.conv1.conv.bias [320] Place(gpu:3)
feature_extractor.net.10.conv2.conv.weight [320, 320, 3] Place(gpu:3)
feature_extractor.net.10.conv2.conv.bias [320] Place(gpu:3)
feature_extractor.net.10.projector.weight [320, 64, 1] Place(gpu:3)
feature_extractor.net.10.projector.bias [320] Place(gpu:3)
tfd.0.weight [160, 320, 1] Place(gpu:3)
tfd.0.bias [160] Place(gpu:3)
tfd.1.weight [160, 320, 2] Place(gpu:3)
tfd.1.bias [160] Place(gpu:3)
tfd.2.weight [160, 320, 4] Place(gpu:3)
tfd.2.bias [160] Place(gpu:3)
tfd.3.weight [160, 320, 8] Place(gpu:3)
tfd.3.bias [160] Place(gpu:3)
tfd.4.weight [160, 320, 16] Place(gpu:3)
tfd.4.bias [160] Place(gpu:3)
tfd.5.weight [160, 320, 32] Place(gpu:3)
tfd.5.bias [160] Place(gpu:3)
tfd.6.weight [160, 320, 64] Place(gpu:3)
tfd.6.bias [160] Place(gpu:3)
tfd.7.weight [160, 320, 128] Place(gpu:3)
tfd.7.bias [160] Place(gpu:3)
sfd.0.weight [101, 320, 160] Place(gpu:3)
sfd.0.bias [101, 160] Place(gpu:3)
---------------------------------------------------------------
input_fc.weight [8, 64] Place(gpu:3)
input_fc.bias [64] Place(gpu:3)
feature_extractor.net.0.conv1.conv.weight [64, 64, 3] Place(gpu:3)
feature_extractor.net.0.conv1.conv.bias [64] Place(gpu:3)
feature_extractor.net.0.conv2.conv.weight [64, 64, 3] Place(gpu:3)
feature_extractor.net.0.conv2.conv.bias [64] Place(gpu:3)
feature_extractor.net.1.conv1.conv.weight [64, 64, 3] Place(gpu:3)
feature_extractor.net.1.conv1.conv.bias [64] Place(gpu:3)
feature_extractor.net.1.conv2.conv.weight [64, 64, 3] Place(gpu:3)
feature_extractor.net.1.conv2.conv.bias [64] Place(gpu:3)
feature_extractor.net.2.conv1.conv.weight [64, 64, 3] Place(gpu:3)
feature_extractor.net.2.conv1.conv.bias [64] Place(gpu:3)
feature_extractor.net.2.conv2.conv.weight [64, 64, 3] Place(gpu:3)
feature_extractor.net.2.conv2.conv.bias [64] Place(gpu:3)
feature_extractor.net.3.conv1.conv.weight [64, 64, 3] Place(gpu:3)
feature_extractor.net.3.conv1.conv.bias [64] Place(gpu:3)
feature_extractor.net.3.conv2.conv.weight [64, 64, 3] Place(gpu:3)
feature_extractor.net.3.conv2.conv.bias [64] Place(gpu:3)
feature_extractor.net.4.conv1.conv.weight [64, 64, 3] Place(gpu:3)
feature_extractor.net.4.conv1.conv.bias [64] Place(gpu:3)
feature_extractor.net.4.conv2.conv.weight [64, 64, 3] Place(gpu:3)
feature_extractor.net.4.conv2.conv.bias [64] Place(gpu:3)
feature_extractor.net.5.conv1.conv.weight [64, 64, 3] Place(gpu:3)
feature_extractor.net.5.conv1.conv.bias [64] Place(gpu:3)
feature_extractor.net.5.conv2.conv.weight [64, 64, 3] Place(gpu:3)
feature_extractor.net.5.conv2.conv.bias [64] Place(gpu:3)
feature_extractor.net.6.conv1.conv.weight [64, 64, 3] Place(gpu:3)
feature_extractor.net.6.conv1.conv.bias [64] Place(gpu:3)
feature_extractor.net.6.conv2.conv.weight [64, 64, 3] Place(gpu:3)
feature_extractor.net.6.conv2.conv.bias [64] Place(gpu:3)
feature_extractor.net.7.conv1.conv.weight [64, 64, 3] Place(gpu:3)
feature_extractor.net.7.conv1.conv.bias [64] Place(gpu:3)
feature_extractor.net.7.conv2.conv.weight [64, 64, 3] Place(gpu:3)
feature_extractor.net.7.conv2.conv.bias [64] Place(gpu:3)
feature_extractor.net.8.conv1.conv.weight [64, 64, 3] Place(gpu:3)
feature_extractor.net.8.conv1.conv.bias [64] Place(gpu:3)
feature_extractor.net.8.conv2.conv.weight [64, 64, 3] Place(gpu:3)
feature_extractor.net.8.conv2.conv.bias [64] Place(gpu:3)
feature_extractor.net.9.conv1.conv.weight [64, 64, 3] Place(gpu:3)
feature_extractor.net.9.conv1.conv.bias [64] Place(gpu:3)
feature_extractor.net.9.conv2.conv.weight [64, 64, 3] Place(gpu:3)
feature_extractor.net.9.conv2.conv.bias [64] Place(gpu:3)
feature_extractor.net.10.conv1.conv.weight [320, 64, 3] Place(gpu:3)
feature_extractor.net.10.conv1.conv.bias [320] Place(gpu:3)
feature_extractor.net.10.conv2.conv.weight [320, 320, 3] Place(gpu:3)
feature_extractor.net.10.conv2.conv.bias [320] Place(gpu:3)
feature_extractor.net.10.projector.weight [320, 64, 1] Place(gpu:3)
feature_extractor.net.10.projector.bias [320] Place(gpu:3)
tfd.0.weight [160, 320, 1] Place(gpu:3)
tfd.0.bias [160] Place(gpu:3)
tfd.1.weight [160, 320, 2] Place(gpu:3)
tfd.1.bias [160] Place(gpu:3)
tfd.2.weight [160, 320, 4] Place(gpu:3)
tfd.2.bias [160] Place(gpu:3)
tfd.3.weight [160, 320, 8] Place(gpu:3)
tfd.3.bias [160] Place(gpu:3)
tfd.4.weight [160, 320, 16] Place(gpu:3)
tfd.4.bias [160] Place(gpu:3)
tfd.5.weight [160, 320, 32] Place(gpu:3)
tfd.5.bias [160] Place(gpu:3)
tfd.6.weight [160, 320, 64] Place(gpu:3)
tfd.6.bias [160] Place(gpu:3)
tfd.7.weight [160, 320, 128] Place(gpu:3)
tfd.7.bias [160] Place(gpu:3)
sfd.0.weight [101, 320, 160] Place(gpu:3)
sfd.0.bias [101, 160] Place(gpu:3)
Epoch #0: loss=0.11843522638082504
Epoch #1: loss=1.8277668952941895
Epoch #2: loss=2.79183030128479
Epoch #3: loss=2.703508138656616
Epoch #4: loss=3.801107168197632
Epoch #5: loss=3.8332786560058594
Epoch #6: loss=1.7377299070358276
Epoch #7: loss=2.970073938369751
Epoch #8: loss=2.749394178390503
Epoch #9: loss=2.724374771118164
Epoch #10: loss=1.8475292921066284
Epoch #11: loss=2.2367184162139893
Epoch #12: loss=2.446979522705078
Epoch #13: loss=3.640838384628296
Epoch #14: loss=3.6744234561920166
Epoch #15: loss=3.283245801925659
Epoch #16: loss=2.683415651321411
Epoch #17: loss=2.3351871967315674
Epoch #18: loss=2.3934645652770996
Epoch #19: loss=1.1038947105407715
Epoch #20: loss=4.246838569641113
Epoch #21: loss=3.8223073482513428
Epoch #22: loss=0.8322081565856934
Epoch #23: loss=3.3173704147338867
Epoch #24: loss=3.762310028076172
Epoch #25: loss=3.7318766117095947
Epoch #26: loss=2.64896559715271
Epoch #27: loss=1.8413087129592896
Epoch #28: loss=1.9077503681182861
Epoch #29: loss=3.2373220920562744
Epoch #30: loss=3.314095973968506
Epoch #31: loss=3.4658377170562744
Epoch #32: loss=3.010157585144043
Epoch #33: loss=2.322514772415161
Epoch #34: loss=3.3709278106689453
Epoch #35: loss=2.720336437225342
Epoch #36: loss=2.6927907466888428
Epoch #37: loss=2.2407922744750977
Epoch #38: loss=0.9788379073143005
Epoch #39: loss=2.2023115158081055
Epoch #40: loss=1.4509133100509644
Epoch #41: loss=1.8751471042633057
Epoch #42: loss=2.18125581741333
Epoch #43: loss=2.8617868423461914
Epoch #44: loss=3.3886406421661377
Epoch #45: loss=2.328399896621704
Epoch #46: loss=2.505998373031616
Epoch #47: loss=2.5051321983337402
Epoch #48: loss=2.887152671813965
Epoch #49: loss=0.4074569046497345
Epoch #50: loss=3.4907937049865723
Epoch #51: loss=3.469280481338501
Epoch #52: loss=1.5518265962600708
Epoch #53: loss=1.9649385213851929
Epoch #54: loss=1.571131706237793
Epoch #55: loss=2.910233736038208
Epoch #56: loss=1.3152186870574951
Epoch #57: loss=0.7828530073165894
Epoch #58: loss=2.423433303833008
Epoch #59: loss=3.644284725189209
Epoch #60: loss=2.9834718704223633
Epoch #61: loss=2.320701837539673
Epoch #62: loss=2.5407373905181885
Epoch #63: loss=3.1801037788391113
Epoch #64: loss=1.6823266744613647
Epoch #65: loss=1.8642255067825317
Epoch #66: loss=1.3453682661056519
Epoch #67: loss=1.7351824045181274
Epoch #68: loss=2.4656569957733154
Epoch #69: loss=2.5529682636260986
Epoch #70: loss=1.894544243812561
Epoch #71: loss=2.4256818294525146
Epoch #72: loss=2.0470192432403564
Epoch #73: loss=2.8739969730377197
Epoch #74: loss=2.7863752841949463
Epoch #75: loss=3.1335015296936035
Epoch #76: loss=0.6245179176330566
Epoch #77: loss=2.8582985401153564
Epoch #78: loss=1.448458194732666
Epoch #79: loss=1.0646430253982544
Epoch #80: loss=0.5278778076171875
Epoch #81: loss=1.5681017637252808
Epoch #82: loss=2.96095609664917
Epoch #83: loss=0.6749690771102905
Epoch #84: loss=1.5615499019622803
Epoch #85: loss=2.7060346603393555
Epoch #86: loss=0.8981297612190247
Epoch #87: loss=1.004695177078247
Epoch #88: loss=2.8364875316619873
Epoch #89: loss=1.4120385646820068
Epoch #90: loss=0.8607433438301086
Epoch #91: loss=3.0315330028533936
Epoch #92: loss=0.5877979397773743
Epoch #93: loss=2.0449843406677246
Epoch #94: loss=3.1597275733947754
Epoch #95: loss=2.912795305252075
Epoch #96: loss=2.5201988220214844
Epoch #97: loss=1.0730087757110596
Epoch #98: loss=1.0764175653457642
Epoch #99: loss=0.5365325212478638
Epoch #100: loss=2.185209274291992
Epoch #101: loss=2.9488298892974854
Epoch #102: loss=2.5688321590423584
Epoch #103: loss=0.6106003522872925
Epoch #104: loss=2.0843136310577393
Epoch #105: loss=1.8345807790756226
Epoch #106: loss=2.186385154724121
Epoch #107: loss=1.122805118560791
Epoch #108: loss=0.7360092997550964
Epoch #109: loss=2.632427215576172
Epoch #110: loss=3.0409438610076904
Epoch #111: loss=1.780414342880249
Epoch #112: loss=2.700887441635132
Epoch #113: loss=0.7954797148704529
Epoch #114: loss=1.7156782150268555
Epoch #115: loss=0.5080925822257996
Epoch #116: loss=2.2168054580688477
Epoch #117: loss=1.5062389373779297
Epoch #118: loss=2.672144651412964
Epoch #119: loss=2.0266292095184326
Epoch #120: loss=1.5492393970489502
Epoch #121: loss=2.600205421447754
Epoch #122: loss=2.727911949157715
Epoch #123: loss=2.542983293533325
Epoch #124: loss=1.047398567199707
Epoch #125: loss=1.4774342775344849
Epoch #126: loss=2.1726412773132324
Epoch #127: loss=2.570969343185425
Epoch #128: loss=2.2245376110076904
Epoch #129: loss=0.8316956758499146
Epoch #130: loss=2.539680004119873
Epoch #131: loss=1.533679485321045
Epoch #132: loss=0.44481566548347473
Epoch #133: loss=1.176772952079773
Epoch #134: loss=2.3965530395507812
Epoch #135: loss=0.23889094591140747
Epoch #136: loss=1.7380203008651733
Epoch #137: loss=2.0905261039733887
Epoch #138: loss=1.310050368309021
Epoch #139: loss=2.1516175270080566
Epoch #140: loss=2.0520639419555664
Epoch #141: loss=2.36765456199646
Epoch #142: loss=2.3388452529907227
Epoch #143: loss=0.627987265586853
Epoch #144: loss=1.8431864976882935
Epoch #145: loss=2.0765998363494873
Epoch #146: loss=2.0465855598449707
Epoch #147: loss=1.8354823589324951
Epoch #148: loss=2.2087557315826416
Epoch #149: loss=2.8488805294036865
Epoch #150: loss=0.4364326298236847
Epoch #151: loss=0.9987381100654602
Epoch #152: loss=3.176581621170044
Epoch #153: loss=1.8448379039764404
Epoch #154: loss=2.135277271270752
Epoch #155: loss=3.0852222442626953
Epoch #156: loss=0.13450005650520325
Epoch #157: loss=1.3668183088302612
Epoch #158: loss=1.5310755968093872
Epoch #159: loss=1.9067327976226807
Epoch #160: loss=2.7904279232025146
Epoch #161: loss=0.4304373264312744
Epoch #162: loss=2.070711135864258
Epoch #163: loss=2.8412787914276123
Epoch #164: loss=0.6810687780380249
Epoch #165: loss=1.6165704727172852
Epoch #166: loss=1.3209171295166016
Epoch #167: loss=1.939107894897461
Epoch #168: loss=1.140006422996521
Epoch #169: loss=1.4561370611190796
Epoch #170: loss=2.4969043731689453
Epoch #171: loss=1.7403223514556885
Epoch #172: loss=0.40269628167152405
Epoch #173: loss=2.3579063415527344
Epoch #174: loss=1.5756760835647583
Epoch #175: loss=2.4492928981781006
Epoch #176: loss=0.7710087895393372
Epoch #177: loss=1.9526443481445312
Epoch #178: loss=0.14580722153186798
Epoch #179: loss=1.5469858646392822
Epoch #180: loss=2.0906152725219727
Epoch #181: loss=1.3158278465270996
Epoch #182: loss=1.0918744802474976
Epoch #183: loss=0.4380511939525604
Epoch #184: loss=0.7639846205711365
Epoch #185: loss=1.5941249132156372
Epoch #186: loss=2.5254383087158203
Epoch #187: loss=0.8623375296592712
Epoch #188: loss=1.191696047782898
Epoch #189: loss=2.1796088218688965
Epoch #190: loss=1.3146138191223145
Epoch #191: loss=1.9237631559371948
Epoch #192: loss=1.8286991119384766
Epoch #193: loss=2.4808263778686523
Epoch #194: loss=0.5642691254615784
Epoch #195: loss=1.4215202331542969
Epoch #196: loss=1.4273375272750854
Epoch #197: loss=0.9979309439659119
Epoch #198: loss=0.299687922000885
Epoch #199: loss=1.9904365539550781
Epoch #200: loss=1.4053666591644287
Epoch #201: loss=2.14337158203125
Epoch #202: loss=2.802582025527954
Epoch #203: loss=0.46608206629753113
Epoch #204: loss=2.4175186157226562
Epoch #205: loss=3.162022113800049
Epoch #206: loss=2.1086816787719727
Epoch #207: loss=1.1753896474838257
Epoch #208: loss=1.523287057876587
Epoch #209: loss=1.9624930620193481
Epoch #210: loss=1.022199034690857
Epoch #211: loss=2.3608558177948
Epoch #212: loss=2.102540969848633
Epoch #213: loss=0.8730144500732422
Epoch #214: loss=1.8086291551589966
Epoch #215: loss=1.6689891815185547
Epoch #216: loss=1.650709629058838
Epoch #217: loss=1.6967769861221313
Epoch #218: loss=1.3365306854248047
Epoch #219: loss=0.5985180735588074
Epoch #220: loss=2.07059383392334
Epoch #221: loss=1.9621860980987549
Epoch #222: loss=1.4655554294586182
Epoch #223: loss=1.7878878116607666
Epoch #224: loss=0.34171193838119507
Epoch #225: loss=0.847809910774231
Epoch #226: loss=0.6070874929428101
Epoch #227: loss=1.82553231716156
Epoch #228: loss=2.2682454586029053
Epoch #229: loss=0.6938998699188232
Epoch #230: loss=1.5990452766418457
Epoch #231: loss=0.8478929996490479
Epoch #232: loss=2.027925491333008
Epoch #233: loss=1.3467522859573364
Epoch #234: loss=2.2346420288085938
Epoch #235: loss=0.39189648628234863
Epoch #236: loss=1.255416989326477
Epoch #237: loss=1.2344352006912231
Epoch #238: loss=2.343782424926758
Epoch #239: loss=0.16867372393608093
Epoch #240: loss=2.216947078704834
Epoch #241: loss=2.0962696075439453
Epoch #242: loss=0.5953076481819153
Epoch #243: loss=1.0494322776794434
Epoch #244: loss=1.4874013662338257
Epoch #245: loss=0.865820586681366
Epoch #246: loss=1.12200927734375
Epoch #247: loss=0.9389716982841492
Epoch #248: loss=2.2618467807769775
Epoch #249: loss=1.1704736948013306
Epoch #250: loss=2.558295249938965
Epoch #251: loss=2.1612114906311035
Epoch #252: loss=2.524263858795166
Epoch #253: loss=0.08879154920578003
Epoch #254: loss=0.8826383948326111
Epoch #255: loss=0.6246809959411621
Epoch #256: loss=1.1254596710205078
Epoch #257: loss=2.1959547996520996
Epoch #258: loss=0.7267249822616577
Epoch #259: loss=0.7874476909637451
Epoch #260: loss=1.2081652879714966
Epoch #261: loss=2.5083279609680176
Epoch #262: loss=1.2916823625564575
Epoch #263: loss=1.8852620124816895
Epoch #264: loss=0.6370160579681396
Epoch #265: loss=1.4203839302062988
Epoch #266: loss=0.9227828979492188
Epoch #267: loss=0.15528368949890137
Epoch #268: loss=0.4356611371040344
Epoch #269: loss=0.8877428770065308
Epoch #270: loss=1.8709076642990112
Epoch #271: loss=2.7354977130889893
Epoch #272: loss=0.2806176245212555
Epoch #273: loss=1.6313092708587646
Epoch #274: loss=1.2659902572631836
Epoch #275: loss=1.348657488822937
Epoch #276: loss=1.9829374551773071
Epoch #277: loss=0.8859232068061829
Epoch #278: loss=0.9904784560203552
Epoch #279: loss=1.55282461643219
Epoch #280: loss=1.0860450267791748
Epoch #281: loss=1.4640579223632812
Epoch #282: loss=0.35747987031936646
Epoch #283: loss=2.3970072269439697
Epoch #284: loss=1.8656989336013794
Epoch #285: loss=1.334277629852295
Epoch #286: loss=2.2742247581481934
Epoch #287: loss=0.590907096862793
Epoch #288: loss=1.787042498588562
Epoch #289: loss=2.1846811771392822
Epoch #290: loss=1.177871584892273
Epoch #291: loss=1.409797191619873
Epoch #292: loss=1.4987001419067383
Epoch #293: loss=0.21703624725341797
Epoch #294: loss=1.1339970827102661
Epoch #295: loss=2.2103922367095947
Epoch #296: loss=0.29789918661117554
Epoch #297: loss=0.5249547958374023
Epoch #298: loss=1.7945797443389893
Epoch #299: loss=0.4229792654514313
Epoch #300: loss=1.259905457496643
Epoch #301: loss=1.1918048858642578
Epoch #302: loss=1.0620478391647339
Epoch #303: loss=2.060412645339966
Epoch #304: loss=0.4091005325317383
Epoch #305: loss=0.7390261292457581
Epoch #306: loss=1.6641626358032227
Epoch #307: loss=0.5239974856376648
Epoch #308: loss=0.32553333044052124
Epoch #309: loss=1.7997130155563354
Epoch #310: loss=0.65947026014328
Epoch #311: loss=0.4913907051086426
Epoch #312: loss=0.6403199434280396
Epoch #313: loss=0.36726200580596924
Epoch #314: loss=2.481017827987671
Epoch #315: loss=0.1756327897310257
Epoch #316: loss=1.864709734916687
Epoch #317: loss=0.8148137331008911
Epoch #318: loss=2.359459161758423
Epoch #319: loss=1.5055192708969116
Epoch #320: loss=1.2151609659194946
Epoch #321: loss=2.167121410369873
Epoch #322: loss=0.3841354548931122
Epoch #323: loss=1.4018501043319702
Epoch #324: loss=0.16728085279464722
Epoch #325: loss=0.9998222589492798
Epoch #326: loss=1.9166797399520874
Epoch #327: loss=1.609806776046753
Epoch #328: loss=0.08512622117996216
Epoch #329: loss=0.4573615789413452
Epoch #330: loss=1.6793503761291504
Epoch #331: loss=1.6299176216125488
Epoch #332: loss=0.3079095184803009
Epoch #333: loss=1.1717857122421265
Epoch #334: loss=0.10187478363513947
Epoch #335: loss=0.5300329923629761
Epoch #336: loss=0.1716645509004593
Epoch #337: loss=2.2197768688201904
Epoch #338: loss=0.9446007609367371
Epoch #339: loss=0.363891065120697
Epoch #340: loss=0.3977978825569153
Epoch #341: loss=0.294156014919281
Epoch #342: loss=0.40133124589920044
Epoch #343: loss=0.5823833346366882
Epoch #344: loss=1.6576482057571411
Epoch #345: loss=0.24705186486244202
Epoch #346: loss=1.3649327754974365
Epoch #347: loss=0.8374406695365906
Epoch #348: loss=0.16159063577651978
Epoch #349: loss=0.24462801218032837
Epoch #350: loss=2.1801724433898926
Epoch #351: loss=0.9022552967071533
Epoch #352: loss=2.17256236076355
Epoch #353: loss=0.7508138418197632
Epoch #354: loss=1.4819313287734985
Epoch #355: loss=0.6754270792007446
Epoch #356: loss=0.631016194820404
Epoch #357: loss=0.40524864196777344
Epoch #358: loss=0.3420989513397217
Epoch #359: loss=0.44734519720077515
Epoch #360: loss=1.7932064533233643
Epoch #361: loss=0.20655590295791626
Epoch #362: loss=1.0884889364242554
Epoch #363: loss=0.660525918006897
Epoch #364: loss=2.342780113220215
Epoch #365: loss=2.0941035747528076
Epoch #366: loss=0.7563431859016418
Epoch #367: loss=1.7927978038787842
Epoch #368: loss=1.7976512908935547
Epoch #369: loss=0.2328610122203827
Epoch #370: loss=0.8036884069442749
Epoch #371: loss=1.3915895223617554
Epoch #372: loss=0.22306829690933228
Epoch #373: loss=0.32155555486679077
Epoch #374: loss=0.14415471255779266
Epoch #375: loss=0.21982985734939575
Epoch #376: loss=0.6762867569923401
Epoch #377: loss=0.18117116391658783
Epoch #378: loss=0.7876461148262024
Epoch #379: loss=1.499449372291565
Epoch #380: loss=0.5599616169929504
Epoch #381: loss=2.1540324687957764
Epoch #382: loss=1.4607075452804565
Epoch #383: loss=0.20110493898391724
Epoch #384: loss=0.6308057904243469
Epoch #385: loss=0.5283546447753906
Epoch #386: loss=1.0435230731964111
Epoch #387: loss=0.7929391860961914
Epoch #388: loss=0.6536241769790649
Epoch #389: loss=1.4750674962997437
Epoch #390: loss=0.6581404209136963
Epoch #391: loss=0.3372896611690521
Epoch #392: loss=1.899290919303894
Epoch #393: loss=0.5243662595748901
Epoch #394: loss=1.9855352640151978
Epoch #395: loss=0.252471923828125
Epoch #396: loss=0.4740586578845978
Epoch #397: loss=0.12527647614479065
Epoch #398: loss=2.07645845413208
Epoch #399: loss=0.552707850933075
Epoch #400: loss=0.13505174219608307
Epoch #401: loss=1.2666444778442383
Epoch #402: loss=0.07663834095001221
Epoch #403: loss=0.4420102536678314
Epoch #404: loss=1.6694509983062744
Epoch #405: loss=2.4241483211517334
Epoch #406: loss=0.1364305168390274
Epoch #407: loss=1.2779884338378906
Epoch #408: loss=2.5688910484313965
Epoch #409: loss=0.6703439354896545
Epoch #410: loss=0.578875720500946
Epoch #411: loss=1.4538559913635254
Epoch #412: loss=0.16555552184581757
Epoch #413: loss=0.45895740389823914
Epoch #414: loss=1.4321025609970093
Epoch #415: loss=0.457249253988266
Epoch #416: loss=1.023820400238037
Epoch #417: loss=1.2430137395858765
Epoch #418: loss=1.2240701913833618
Epoch #419: loss=0.08881701529026031
Epoch #420: loss=0.8711148500442505
Epoch #421: loss=1.1966997385025024
Epoch #422: loss=0.49398675560951233
Epoch #423: loss=1.7761374711990356
Epoch #424: loss=0.22435474395751953
Epoch #425: loss=0.26050376892089844
Epoch #426: loss=0.5376260876655579
Epoch #427: loss=1.8172763586044312
Epoch #428: loss=0.5654950141906738
Epoch #429: loss=0.09855571389198303
Epoch #430: loss=1.6945897340774536
Epoch #431: loss=0.164350688457489
Epoch #432: loss=0.5612373948097229
Epoch #433: loss=0.14355039596557617
Epoch #434: loss=1.017423391342163
Epoch #435: loss=0.15559589862823486
Epoch #436: loss=0.4745950996875763
Epoch #437: loss=1.9617750644683838
Epoch #438: loss=1.4705896377563477
Epoch #439: loss=0.3658471405506134
Epoch #440: loss=0.12705688178539276
Epoch #441: loss=1.3016389608383179
Epoch #442: loss=2.2653911113739014
Epoch #443: loss=0.26656049489974976
Epoch #444: loss=0.6350735425949097
Epoch #445: loss=1.2058820724487305
Epoch #446: loss=0.950596272945404
Epoch #447: loss=0.5802498459815979
Epoch #448: loss=0.10341622680425644
Epoch #449: loss=0.22905299067497253
Epoch #450: loss=0.8215345144271851
Epoch #451: loss=1.1444591283798218
Epoch #452: loss=1.679955244064331
Epoch #453: loss=0.741042971611023
Epoch #454: loss=1.578665852546692
Epoch #455: loss=0.9486821293830872
Epoch #456: loss=0.18114179372787476
Epoch #457: loss=0.5567153096199036
Epoch #458: loss=0.624398946762085
Epoch #459: loss=1.8464607000350952
Epoch #460: loss=1.8883047103881836
Epoch #461: loss=0.5792050361633301
Epoch #462: loss=1.577878713607788
Epoch #463: loss=0.20002950727939606
Epoch #464: loss=1.1835561990737915
Epoch #465: loss=1.282407522201538
Epoch #466: loss=1.4321796894073486
Epoch #467: loss=1.46696937084198
Epoch #468: loss=2.0324931144714355
Epoch #469: loss=2.0107333660125732
Epoch #470: loss=1.267538070678711
Epoch #471: loss=0.15293578803539276
Epoch #472: loss=0.1966252326965332
Epoch #473: loss=0.9119217991828918
Epoch #474: loss=2.2322909832000732
Epoch #475: loss=0.3692364990711212
Epoch #476: loss=1.948358178138733
Epoch #477: loss=0.8744984269142151
Epoch #478: loss=1.9760141372680664
Epoch #479: loss=1.4724963903427124
Epoch #480: loss=0.39926955103874207
Epoch #481: loss=0.7129217386245728
Epoch #482: loss=0.08174116164445877
Epoch #483: loss=0.3032200336456299
Epoch #484: loss=1.1641861200332642
Epoch #485: loss=0.12908071279525757
Epoch #486: loss=0.15051011741161346
Epoch #487: loss=0.6401590704917908
Epoch #488: loss=0.22942590713500977
Epoch #489: loss=1.0134682655334473
Epoch #490: loss=1.6352280378341675
Epoch #491: loss=0.8040952682495117
Epoch #492: loss=1.127514123916626
Epoch #493: loss=0.10358463227748871
Epoch #494: loss=0.23166653513908386
Epoch #495: loss=0.8789159655570984
Epoch #496: loss=2.1173791885375977
Epoch #497: loss=0.18916508555412292
Epoch #498: loss=0.852955162525177
Epoch #499: loss=0.4668065309524536
Epoch #500: loss=0.2713424563407898
Epoch #501: loss=0.33426856994628906
Epoch #502: loss=0.6605483889579773
Epoch #503: loss=1.9571939706802368
Epoch #504: loss=1.3234220743179321
Epoch #505: loss=0.8575399518013
Epoch #506: loss=1.7117077112197876
Epoch #507: loss=0.08539796620607376
Epoch #508: loss=0.3002617359161377
Epoch #509: loss=1.17414128780365
Epoch #510: loss=1.7158211469650269
Epoch #511: loss=0.24160605669021606
Epoch #512: loss=0.5847464799880981
Epoch #513: loss=1.1194746494293213
Epoch #514: loss=1.0690641403198242
Epoch #515: loss=0.821635365486145
Epoch #516: loss=0.11807781457901001
Epoch #517: loss=2.2230398654937744
Epoch #518: loss=0.6995784044265747
Epoch #519: loss=1.115304946899414
Epoch #520: loss=2.019871473312378
Epoch #521: loss=0.26325929164886475
Epoch #522: loss=0.9442477226257324
Epoch #523: loss=0.17168143391609192
Epoch #524: loss=0.4351004660129547
Epoch #525: loss=0.19922487437725067
Epoch #526: loss=1.2205536365509033
Epoch #527: loss=1.5115511417388916
Epoch #528: loss=2.428103446960449
Epoch #529: loss=2.0455873012542725
Epoch #530: loss=0.39900651574134827
Epoch #531: loss=0.8724826574325562
Epoch #532: loss=1.5888872146606445
Epoch #533: loss=1.649641513824463
Epoch #534: loss=2.0126655101776123
Epoch #535: loss=1.3822548389434814
Epoch #536: loss=0.11757534742355347
Epoch #537: loss=0.33485129475593567
Epoch #538: loss=0.4028525650501251
Epoch #539: loss=1.3914189338684082
Epoch #540: loss=0.16738268733024597
Epoch #541: loss=1.7885738611221313
Epoch #542: loss=2.4471893310546875
Epoch #543: loss=0.20510712265968323
Epoch #544: loss=0.7428438663482666
Epoch #545: loss=0.7860126495361328
Epoch #546: loss=0.21597333252429962
Epoch #547: loss=1.6265685558319092
Epoch #548: loss=1.0485873222351074
Epoch #549: loss=0.8341190218925476
Epoch #550: loss=0.272211492061615
Epoch #551: loss=0.10027693212032318
Epoch #552: loss=0.3025144636631012
Epoch #553: loss=1.2919621467590332
Epoch #554: loss=1.478575587272644
Epoch #555: loss=0.4625180661678314
Epoch #556: loss=0.2531033158302307
Epoch #557: loss=1.186411738395691
Epoch #558: loss=0.34371235966682434
Epoch #559: loss=2.0422630310058594
Epoch #560: loss=1.2156636714935303
Epoch #561: loss=0.1163695901632309
Epoch #562: loss=0.21535605192184448
Epoch #563: loss=1.688009262084961
Epoch #564: loss=0.2410202920436859
Epoch #565: loss=0.19677792489528656
Epoch #566: loss=0.08230407536029816
Epoch #567: loss=0.9314576387405396
Epoch #568: loss=1.5518062114715576
Epoch #569: loss=0.20737653970718384
Epoch #570: loss=0.20116887986660004
Epoch #571: loss=0.6812450885772705
Epoch #572: loss=0.8107600212097168
Epoch #573: loss=1.3217594623565674
Epoch #574: loss=0.8787587881088257
Epoch #575: loss=0.6898106336593628
Epoch #576: loss=0.14068201184272766
Epoch #577: loss=0.663821816444397
Epoch #578: loss=0.16426198184490204
Epoch #579: loss=0.36956045031547546
Epoch #580: loss=0.4862251877784729
Epoch #581: loss=0.5103197693824768
Epoch #582: loss=0.5518488883972168
Epoch #583: loss=0.35720184445381165
Epoch #584: loss=1.505527377128601
Epoch #585: loss=1.8244110345840454
Epoch #586: loss=0.11126503348350525
Epoch #587: loss=1.7078906297683716
Epoch #588: loss=0.23770712316036224
Epoch #589: loss=0.2476593255996704
Epoch #590: loss=1.2943475246429443
Epoch #591: loss=1.923711895942688
Epoch #592: loss=0.24022671580314636
Epoch #593: loss=0.06407451629638672
Epoch #594: loss=1.6884044408798218
Epoch #595: loss=2.4225800037384033
Epoch #596: loss=0.17829643189907074
Epoch #597: loss=1.7280824184417725
Epoch #598: loss=0.14269526302814484
Epoch #599: loss=0.1525946408510208
Training time: 0:04:27.722521
Evaluation result: {'ours': {24: {'norm': {'MSE': 0.09093447823885772, 'MAE': 0.2444660961727188}, 'raw': {'MSE': 7.6516433978153415, 'MAE': 2.2424961760567976}}, 48: {'norm': {'MSE': 0.10627541329647779, 'MAE': 0.26504857133833426}, 'raw': {'MSE': 8.942499887810168, 'MAE': 2.4312999465799447}}, 96: {'norm': {'MSE': 0.1292584518805571, 'MAE': 0.2946752542287619}, 'raw': {'MSE': 10.876397946808652, 'MAE': 2.703066553851147}}, 288: {'norm': {'MSE': 0.18572878219363853, 'MAE': 0.35021772408948065}, 'raw': {'MSE': 15.628069998678034, 'MAE': 3.212559591065719}}, 672: {'norm': {'MSE': 0.22958746820824477, 'MAE': 0.3924864307918543}, 'raw': {'MSE': 19.318540559490394, 'MAE': 3.6002919273747547}}}, 'encoder_infer_time': 17.240046739578247, 'lr_train_time': {24: 3.2216343879699707, 48: 3.623534679412842, 96: 3.706763982772827, 288: 4.991279602050781, 672: 6.95696759223938}, 'lr_infer_time': {24: 0.027762889862060547, 48: 0.029367446899414062, 96: 0.04609060287475586, 288: 0.0750274658203125, 672: 0.1150655746459961}}
Finished.