diff --git a/conjugate_prior/__init__.py b/conjugate_prior/__init__.py index abb7831..0544224 100644 --- a/conjugate_prior/__init__.py +++ b/conjugate_prior/__init__.py @@ -3,4 +3,5 @@ from .beta import * from .normal import * from .invgamma import * -__version__ = '0.8' +from .prior import ConjugatePrior +__version__ = '0.81' diff --git a/conjugate_prior/prior.py b/conjugate_prior/prior.py new file mode 100644 index 0000000..d617899 --- /dev/null +++ b/conjugate_prior/prior.py @@ -0,0 +1,74 @@ +import numpy as np +import scipy.stats as stats +import pandas as pd +from .gamma import GammaExponential +from .normal import NormalNormalKnownVar +from .invgamma import InvGammaWeibullKnownShape +try: + from matplotlib import pyplot as plt +except ModuleNotFoundError: + import sys + + sys.stderr.write("matplotlib was not found, plotting would raise an exception.\n") + plt = None + +def aic_bic(data, dist_name, params): + """Calculate AIC and BIC for a given distribution""" + dist = getattr(stats, dist_name) + log_likelihood = np.sum(dist.logpdf(data, *params)) + k = len(params) + n = len(data) + aic = 2*k - 2*log_likelihood + bic = np.log(n)*k - 2*log_likelihood + return aic, bic + +class ConjugatePrior: + def __init__(self, criterion='aic') -> None: + self.criterion = criterion + self.best_fit = None + self.params = {} + + def fit(self, X): + norm_params = stats.norm.fit(X) + exp_params = stats.expon.fit(X) + weibull_params = stats.weibull_min.fit(X) + + # Calculate AIC and BIC for each distribution + aic_norm, bic_norm = aic_bic(X, 'norm', norm_params) + aic_exp, bic_exp = aic_bic(X, 'expon', exp_params) + aic_weibull, bic_weibull = aic_bic(X, 'weibull_min', weibull_params) + + # Collect results in a DataFrame for comparison + results = pd.DataFrame({ + 'Distribution': ['norm', 'expon', 'weibull_min'], + 'AIC': [aic_norm, aic_exp, aic_weibull], + 'BIC': [bic_norm, bic_exp, bic_weibull] + }) + + if self.criterion.lower() == 'aic': + self.best_fit = results.loc[results['AIC'].idxmin()]["Distribution"] + elif self.criterion.lower() == 'bic': + self.best_fit = results.loc[results['BIC'].idxmin()]["Distribution"] + else: + raise ValueError("Criterion must be either 'aic' or 'bic'") + if self.best_fit == 'norm': + self.params = norm_params + elif self.best_fit == 'expon': + self.params = exp_params + elif self.best_fit == 'weibull_min': + self.params = weibull_params + + def predict(self, X): + if self.best_fit is None: + raise ValueError("You must call the fit method first") + dist = getattr(stats, self.best_fit) + return dist.pdf(X, *self.params) + + def as_prior(self): + # TODO: Check + if self.best_fit == 'norm': + return NormalNormalKnownVar(*self.params) + elif self.best_fit == 'expon': + return GammaExponential(*self.params) + elif self.best_fit == 'weibull_min': + return InvGammaWeibullKnownShape(*self.params) \ No newline at end of file