forked from libjohn/workshop_flexdashboards
-
Notifications
You must be signed in to change notification settings - Fork 0
/
index.Rmd
273 lines (180 loc) · 7.77 KB
/
index.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
---
title: "Interactivity Demo"
output:
flexdashboard::flex_dashboard:
orientation: columns
vertical_layout: fill
navbar:
- {title: "DVS", href: "https://library.duke.edu/data/", align: right}
- {icon: "fa-home", href: "https://rfun.library.duke.edu", align: right }
- {icon: "fa-github", href: "https://github.com/libjohn/workshop_flexdashboards", align: right }
---
```{r setup, include=FALSE}
library(tidyverse)
library(crosstalk)
library(flexdashboard)
library(plotly)
library(summarywidget)
library(DT)
library(leaflet)
```
```{r}
sw_eye <- starwars %>%
filter(eye_color == str_extract(eye_color, "\\w+")) %>%
filter(eye_color != "unknown",
eye_color != "hazel",
eye_color != "white") %>%
filter(mass < 200) %>%
mutate(eye_color = fct_infreq(eye_color)) %>%
mutate(species = fct_rev(fct_infreq(species)))
sw_eye_levels <- levels(sw_eye$eye_color)
shared_sw_eye <- SharedData$new(sw_eye)
```
```{r}
scatter <- plot_ly(data = shared_sw_eye, x = ~mass, y = ~height,
color = ~eye_color, colors = sw_eye_levels,
text = ~name, mode = "markers") %>%
layout(title = "Mass by Height + Eye Color")
```
Star Wars Characters
=============================================================
Sidebar1 {.sidebar}
-----------------------------------------------------------------------
```{r}
filter_slider("height", "Height", shared_sw_eye, ~height)
filter_select("hair", "Hair Color", shared_sw_eye, ~hair_color)
filter_select("shortspecies", "Select Species", shared_sw_eye, ~species)
filter_checkbox("sw_eye_levels", "Eye Color", shared_sw_eye, ~eye_color, columns = 2)
```
`r summarywidget(shared_sw_eye, 'count', 'eye_color', selection=~eye_color=="black")` Characters with **Black Eyes**
<big>`r summarywidget(shared_sw_eye, statistic='count', column='eye_color')` Total Characters</big>
Column
-----------------------------------------------------------------------
### Chart A
```{r}
scatter
```
> Data Source: [dplyr::starwars](https://dplyr.tidyverse.org/reference/starwars.html)
Easy Plotly & Time Series
=========================================================
```{r}
trump <- read_csv("https://projects.fivethirtyeight.com/trump-approval-data/approval_topline.csv",
col_types = cols(modeldate = col_date(format = "%m/%d/%Y"),
timestamp = col_datetime(format = "%H:%M:%S %d %b %Y ")))
trump_over_under <- trump %>%
filter(subgroup == "All polls") %>%
select(modeldate, approve_estimate, disapprove_estimate) %>%
gather("pol_type", "score", -modeldate)
```
### via ggplot2
```{r ggplot_trump_score}
trump_over_under <- ggplot(trump_over_under, aes(x = modeldate, y = score, color = pol_type)) +
geom_line() +
scale_color_manual(values = c("forestgreen", "darkorange3"),
labels = c("Approve", "Disapprove")) +
labs(x = "", y = "Approval Rating",
color = "", title = "Tump Approval Ratings")
ggsave(width = 8, height = 1.6, dpi = 300, "trump_over_under.png")
```
![](trump_over_under.png "Trump Approval Ratings")
### Plotly via `ggplotly()`
```{r plottly_ggplot_trumpscore}
ggplotly(trump_over_under)
```
> Data Source: https://fivethirtyeight.com
Hurricane Origins {data-icon="fa-map"}
===========================================================
```{r}
canes <- read_csv("data/hurricanes.csv") %>%
select(-order, -casualties, -`damage (mn)`) %>%
select(1, 2, 3, 4, 7, 10, 13, 11, 12, everything())
sd_canes <- SharedData$new(canes)
canes_map <- sd_canes %>%
leaflet(width = "100%") %>%
addTiles() %>%
addMarkers(lat = ~COUNTRY_LAT,
lng = ~COUNTRY_LON,
popup = ~storm)
canes_table <- datatable(sd_canes, extensions="Scroller", style="bootstrap", class="compact", width="100%",
options=list(deferRender=TRUE, scrollY=300, scroller=TRUE))
```
Sidebar2 {.sidebar}
-----------------------------------------------------------------------
```{r}
filter_slider("peak", "Peak Wind Speed", sd_canes, column=~`peak wind`, step=10)
filter_checkbox("usafct", "US Landfall", sd_canes, ~`us affected`, inline = TRUE)
```
**Linked Brusing** is possible via the `crosstalk` library package: `crosstalk::SharedData$new(df)`
Column
-----------------
###
```{r}
canes_map
```
###
```{r}
canes_table
```
> Data Source: [Practice Dataset](https://github.com/libjohn/workshop_dash_explore/blob/master/data/hurricanes.csv)
Exercises
==============================================================
###
1. [Easy interactive](11_exercise_timeseries.Rmd) ggplot2 via `plotlly::ggplotly()` -- [**answers**](11_exercise_timeseries_answers.html)
1. [Linked Brushing via Shared Data](12_exercise_crosstalk_map.Rmd) -- [**answers**](12_exercise_crosstalk_map_answers.html)
1. [Putting it all together](13_exercise_all_together_answers.Rmd) (layouts, shared data, filters, gauges, value boxes) -- [**answers**](13_exercise_all_together_answers.html)
Animate
==============================================================
### gganimate -- Choropleth to Cartogram of population growth in Africa, 2005
<img src = "https://i0.wp.com/www.r-graph-gallery.com/wp-content/uploads/2018/01/333_Animated_Cartogram_8.gif" alt = "Animation: Choropleth to Cartogram of population growth in Africa, 2005">
> Another option is to annimate a plot. We don't discuss that in this workshop, but you can look at the [gganimate](https://gganimate.com/) page to learn more. Image Credit: https://www.r-graph-gallery.com/cartogram/
Resources
=============================================================
Column {data-width="66%"}
-------------------------------------------------------------
### Library Packages
#### Used in this Workshop
- `flexdashboard` [documentation](https://rmarkdown.rstudio.com/flexdashboard/) -- Manage dashboard layouts (includes gauges)
- `crosstalk` [documentation](https://rstudio.github.io/crosstalk/) -- Enables linked brushing i.e. shared data
- **Compatible/Interactive** CrossTalk enabled HTML Widgets:
- `plotly` -- (easies: `ggpplotly(ggpplot_object)`)
- `DT` -- displays tabular data
- `leaflet` -- shows maps
- `summarywidget` (sum, mean, count, etc.)
- More [HTML Widgets](https://www.htmlwidgets.org/). For example: `dygraphs` for time series, plus a whole passel of other widgets in the [gallery](http://gallery.htmlwidgets.org/)
#### See Also
[Storyboards](https://beta.rstudioconnect.com/jjallaire/htmlwidgets-showcase-storyboard/htmlwidgets-showcase-storyboard.html) and other [gallery examples](https://rmarkdown.rstudio.com/flexdashboard/examples.html) by Flexdashboards
#### Books (Online Documentation)
[_Plotly for R_](https://plotly-book.cpsievert.me/) by Carson Sievert
[_R Markdown_](https://bookdown.org/yihui/rmarkdown/): The Definitive Guide by Yihui Xie, J. J. Allaire, Garrett Grolemund. Covering **Dashboards**: components, gauges, value boxes -- Chapter 5 ; **HTML Widgets** -- Chapter 16
### Box A
```{r}
eye_colors <- count(sw_eye %>% dplyr::distinct(eye_color))
valueBox(eye_colors, caption = "The subset of Star Wars characters consists of several distinct eye colors", icon="fa-eye", color = "rgb(224,102,255)")
```
Distinct Eye Colors
Column {data-width="33%"}
------------------------------------------------------
### Box 1
```{r}
valueBox(3, caption = "Value boxes deliver infographic gravitas", icon="fa-thumbs-up")
```
Packages
### Interactivity
```{r}
gauge("100", min = 0, max = 100, symbol = '%', gaugeSectors(
success = c(80, 100), warning = c(40, 79), danger = c(0, 39)
))
```
### Simplity
```{r}
gauge(45, min = 0, max = 100, gaugeSectors(
success = c(90, 100), warning = c(25, 89), danger = c(0, 24)
))
```
### Cost
```{r}
gauge(0, min = -1, max = 10, symbol = "$", gaugeSectors(
success = c(0, 2), warning = c(3, 6), danger = c(7, 10)
))
```
> Gauges are visual!