-
Notifications
You must be signed in to change notification settings - Fork 0
/
prototype_04.py
74 lines (58 loc) · 2.38 KB
/
prototype_04.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import os
import tensorflow as tf
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
#make sure tensorflow using GPU!
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
batch_size = 50
learning_rate = 0.1
num_steps = 1000
display_step = 100
fp = os.path.join('csv', 'DataSet_02.csv')
data = pd.read_csv(fp, skiprows=[0], usecols=[0, 2, 3, 4], header=None)
def cleaner(data):
data = pd.DataFrame.drop(data,columns=[0])
indz = []
for index,row in data.iterrows():
check = 0
for i in row:
check+=i
if check == 0:
indz.append(index)
data = pd.DataFrame.drop(data,index=indz)
return data
data = cleaner(data)
dataShape = data.shape
numSmp = round(dataShape[0] * 0.8)
remSmp = dataShape[0] - numSmp
dataToTrain = data.sample(n=numSmp, random_state=35489)
dataToTest = data.drop(dataToTrain.index)
dataToTrain_feature = pd.DataFrame.drop(dataToTrain,columns=[2])
dataToTrain_lable = pd.DataFrame.drop(dataToTrain,columns=[3,4])
dataToTest_feature = pd.DataFrame.drop(dataToTest,columns=[2])
dataToTest_lable = pd.DataFrame.drop(dataToTest,columns=[3,4])
dttn_f_a = np.array(dataToTrain_feature.values,'float32')
dttn_l_a = np.array(dataToTrain_lable.values,'float32')
dtts_f_a = np.array(dataToTest_feature.values,'float32')
dtts_l_a = np.array(dataToTest_lable.values,'float32')
X = tf.placeholder(dtype='float32',shape=[2],name='X')
Y = tf.placeholder(dtype='float32',shape=[1], name='Y')
w = tf.Variable(tf.zeros([2]), name='weights')
b = tf.Variable(tf.zeros([1]), name='bias')
pred = tf.add(tf.multiply(X,w),b)
cost = tf.reduce_sum(tf.pow(pred - Y, 2)) / (2 * numSmp)
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
for step in range(num_steps):
for (x, y) in zip(dttn_f_a,dttn_l_a):
sess.run(optimizer,feed_dict={X:x,Y:y})
if (step + 1) % display_step == 0:
c = sess.run(cost, feed_dict={X:x,Y:y})
print("Step:","%04d"%(step + 1), "cost=", "{:.9f}".format(c),
"W=", sess.run(w), "b=", sess.run(b))
print("Optimization Finished!")
training_cost = sess.run(cost, feed_dict={X:x, Y:y})
print("Training cost=", training_cost, "W=", sess.run(w), "b=", sess.run(b), '\n')