-
Notifications
You must be signed in to change notification settings - Fork 1
/
multi_EMD_DCM_SV.m
469 lines (421 loc) · 12.8 KB
/
multi_EMD_DCM_SV.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
function [fm,am,FM,AM,IMF,IMF2,mx_nIMF2, ph, PH] = multi_EMD_DCM_SV(data,fs,TNM,TNM2,S)
% This code implements the 2-layer EMD with the enhanced algorithm of EMD(masking EMD)
% History: This code was written by Wei-Kuang Liang & Jia-Rong Yeh
% Input
% data: 1D data
% fs: frequency rate
% TNM: number of IMF;
% TNM2: number of imf of envelope of IMF;
% ifmethod:first layer IMF, method of determining an instantaneous frequency (and amplitude)
% ifmethod2: second layer IMF, method of determining an instantaneous frequency (and amplitude)
% Output
% fm: - 2-D matrix that specifies the frequency values
% am: - 2-D matrix that specifies the amplitude values
% FM: - 3-D matrix that specifies the frequency values of envelope
% AM: - 3-D matrix that specifies the amplitude values of envelope
% IMF: - first EMD 2D, IMF <L,TNM> L: data length, TNM : number of IMF;
% IMF2: - second EMD 3D, IMF2 <L,TNM2, TNM> TNM2 : number of imf of envelope of IMF;
%----- Define default parameters
if nargin<3
TNM = []; % TNM : number of required imf; if it is less than zero, then automatically determine the number
end
if nargin<4
TNM2 = []; % TNM : number of required imf of envelope; if it is less than zero, then automatically determine the number
end
if nargin<5
ifmethod=[];
ifmethod2=[];
ampRatio = [];
odrMsk = [];
ampRatio2 = [];
odrMsk2 = [];
shiftLevel=[];
phase=[];
phase2=[];
ws_r=[];
else
try ifmethod=S.ifmethod; catch ifmethod=[]; end
try ifmethod2=S.ifmethod2; catch ifmethod2=[]; end
try ampRatio = S.ENoise; catch ampRatio=[]; end
try odrMsk = S.NEnsemble; catch odrMsk=[]; end
try ampRatio2 = S.ENoise2; catch ampRatio2=[]; end
try odrMsk2 = S.NEnsemble2; catch odrMsk2=[]; end
try shiftLevel=S.shiftLevel; catch shiftLevel=[]; end
try phase=S.phase; catch phase=[]; end
try phase2=S.phase2; catch phase2=[]; end
try ws_r=S.ws_r; catch ws_r=[]; end
end
if isempty(TNM)
TNM = -1;
end
if isempty(TNM2)
TNM2 = -1;
end
if isempty(ifmethod)
ifmethod = 'quad';
end
if isempty(ifmethod2)
ifmethod2 = 'quad';
end
if isempty(shiftLevel)
shiftLevel=0;
end
if isempty(ampRatio)
ampRatio=2;
end
if isempty(ampRatio2)
ampRatio2=2;
end
if isempty(odrMsk)
odrMsk=0;
end
if isempty(odrMsk2)
odrMsk2=0;
end
if isempty(phase)
phase = 0;
end
if isempty(phase2)
phase2 = 0;
end
if isempty(ws_r)
%ws_r=1.189;
ws_r=1;
end
if (TNM <= 0) % automatic estimating number of imf
TNM=fix(log2(length(data)));
end
if (TNM2 <= 0) % automatic estimating number of imf
TNM2=fix(log2(length(data)));
end
mx_nIMF2=zeros(TNM,1);
% EMD Parameter
%
%
% toFlip = 0; % toFlip : 0=> Original EEMD, References[2] ; 1=> Add anti-phase noise into signal, the way is the same as CEEMD, References[3]
% numIteration = 10; % numIteration : number of sifting iteration
% typeSpline = 3; % typeSpline : 1=> clamped spline; 2=> not a knot spline;
% toModify = 1; % toModify : 0=> None ; 1=> Apply modified linear extrapolation to boundary ; 2 => Mirror Boundary
% randType = 1; % randType : 1=> uniformly distributed white noise; 2=> gaussian white noise
% seedNo : random seed used for white noise; The value of seed must be an integer between 0 and 2^32 - 1
% checkSignal : 1=> verify if input signal had NaN or Infinity elements; 0=> Not verify input signal
%% first layer EMD
L =length(data);
sd=std(data,1);
% IMF = rcada_eemd(data,NoiseLevel,NE,TNM,toFlip,numIteration); % EEMD
[IMF]=cmask_emd3GU(data, -1, odrMsk, shiftLevel, ampRatio, ws_r);
cpoint =[];
for i_imf = 1:TNM
[indmin, indmax, indzc] = extr(IMF(:,i_imf));
if ~isempty(indmax) && ~isempty(indmin) && sum(IMF(indmax,i_imf))>(1e-10*sd)
if length(indmax)+length(indmin)+length(indzc)>=5
cpoint=[cpoint i_imf];
end
end
end
cpoint=1:max(cpoint);
CL = length(cpoint);
%am(:,1:CL) = envlp(IMF(:,1:CL));
% if all(am(:,1)==IMF(:,1))
% am(:,2:CL) = envlp(IMF(:,2:CL));
% [temp, am(:,1)] = fa(IMF(:,1),1/fs,'hilbert');
% end
% if ~(isequal(ifmethod, 'qzc'))
if CL>0
am(:,1:CL) = envelope(IMF(:,1:CL));
if ~ phase
tmpfm = fa(IMF(:,1:CL),1/fs,ifmethod); %fm(:,1:CL)
fm(:,1:CL)=tmpfm;
else
[tmpfm,~,tmpph] = fa(IMF(:,1:CL),1/fs,ifmethod); %fm(:,1:CL)
fm(:,1:CL)=tmpfm;
ph(:,1:CL)=tmpph;
end
end
if TNM>CL
IMF = [IMF(:,1:CL) sum(IMF(:,CL+1:end),2)];
am(:,CL+1) = abs(IMF(:,end));
fm(:,CL+1) = zeros(L,1);
if phase
ph(:,CL+1) = zeros(L,1);
end
IMF2 = zeros(L,TNM2,CL+1);
FM = zeros(L,TNM2,CL+1);
if phase2
PH = zeros(L,TNM2,CL+1);
end
AM = zeros(L,TNM2,CL+1);
else
IMF2 = zeros(L,TNM2,CL);
FM = zeros(L,TNM2,CL);
AM = zeros(L,TNM2,CL);
if phase2
PH = zeros(L,TNM2,CL);
end
end
%% Second layer EMD
maxC = 0;
for i_imf=1:CL
% IMF2(:,:,i_imf) = rcada_eemd(am(:,i_imf),NoiseLevel2,NE2,TNM2); % EEMD
IMF2(:,:,i_imf)=cmask_emd3GU(am(:,i_imf), -1, odrMsk2, 0, ampRatio2);
cpoint2 =[];
for j_imf = 1:TNM2
[indmin, indmax,indzc] = extr(IMF2(:,j_imf,i_imf));
if ~isempty(indmax) && ~isempty(indmin) && sum(IMF2(indmax,j_imf,i_imf))>(1e-10*sd)
if length(indmax)+length(indmin)+length(indzc)>=5
cpoint2=[cpoint2 j_imf];
end
% else
% break %% aeemd allows an IMF near zero, but not zeros for the following IMFs
end
end
cpoint2=1:max(cpoint2);
CL2 = length(cpoint2);
if size(IMF2,2)>CL2
IMF2(:,1:CL2+1,i_imf) = [IMF2(:,1:CL2,i_imf) sum(IMF2(:,CL2+1:end,i_imf),2)];
IMF2(:,CL2+2:end,i_imf) = zeros(L,size(IMF2,2)-CL2-1);
AM(:,CL2+1,i_imf) = abs(IMF2(:,CL2+1,i_imf));
FM(:,CL2+1,i_imf) = zeros(L,1);
mx_nIMF2(i_imf)=CL2+1;
else
mx_nIMF2(i_imf)=CL2;
end
if CL2>maxC
maxC = CL2;
end
if CL2>0
AM(:,cpoint2,i_imf) = envelope(IMF2(:,cpoint2,i_imf));
if ~ phase2
tmpFM=fa(IMF2(:,cpoint2,i_imf),1/fs,ifmethod2);
FM(:,cpoint2,i_imf) = tmpFM;
else
[tmpFM,~,tmpPH]=fa(IMF2(:,cpoint2,i_imf),1/fs,ifmethod2);
FM(:,cpoint2,i_imf) = tmpFM;
PH(:,cpoint2,i_imf) = tmpPH;
end
end
end
if TNM2>maxC
IMF2 = IMF2(:,1:maxC+1,:);
AM = AM(:,1:maxC+1,:);
FM = FM(:,1:maxC+1,:);
if phase2
PH = PH(:,1:maxC+1,:);
end
end
%%
function [envmax] = envelope(data,INTERP)
%computes envelopes and mean with various interpolations
NBSYM = 2;
DEF_INTERP = 'spline';
if nargin < 2
t = 1:length(data);
INTERP = DEF_INTERP;
end
if ~ischar(INTERP)
error('interp parameter must be ''linear'''', ''cubic'' or ''spline''')
end
if ~any(strcmpi(INTERP,{'linear','cubic','spline'}))
error('interp parameter must be ''linear'''', ''cubic'' or ''spline''')
end
s = size(data);
if s(1) > s(2)
data = data';
end
envmax=zeros(size(data));
for ijk = 1:size(data,1)
x = data(ijk,:);
lx = length(x);
[indmin,indmax,~] = extr(x);
if (length(indmin) + length(indmax) < 3)
% error('not enough extrema')
envmax(ijk,:) = abs(x);
%envmin(ijk,:) = -abs(x);
else
%boundary conditions for interpolation
[tmin,tmax,xmin,xmax] = boundary_conditions(indmin,indmax,t,x,NBSYM);
% definition of envelopes from interpolation
% envmax(ijk,:) = interp1(tmax,xmax,t,INTERP);
% envmin(ijk,:) = interp1(tmin,xmin,t,INTERP);
[tminmax,tid]=sort([tmin tmax]);
xm=[xmin xmax];
xminmax=abs(xm(tid));
envmax(ijk,:) = interp1(tminmax,xminmax,t,INTERP);
end
end
if s(1) > s(2)
envmax = envmax';
%envmin = envmin';
end
%---------------------------------------------------------------------------------------
function [tmin,tmax,xmin,xmax] = boundary_conditions(indmin,indmax,t,x,nbsym)
% computes the boundary conditions for interpolation (mainly mirror symmetry)
lx = length(x);
if (length(indmin) + length(indmax) < 3)
error('not enough extrema')
end
if indmax(1) < indmin(1)
if x(1) > x(indmin(1))
lmax = fliplr(indmax(2:min(end,nbsym+1)));
lmin = fliplr(indmin(1:min(end,nbsym)));
lsym = indmax(1);
else
lmax = fliplr(indmax(1:min(end,nbsym)));
lmin = [fliplr(indmin(1:min(end,nbsym-1))),1];
lsym = 1;
end
else
if x(1) < x(indmax(1))
lmax = fliplr(indmax(1:min(end,nbsym)));
lmin = fliplr(indmin(2:min(end,nbsym+1)));
lsym = indmin(1);
else
lmax = [fliplr(indmax(1:min(end,nbsym-1))),1];
lmin = fliplr(indmin(1:min(end,nbsym)));
lsym = 1;
end
end
if indmax(end) < indmin(end)
if x(end) < x(indmax(end))
rmax = fliplr(indmax(max(end-nbsym+1,1):end));
rmin = fliplr(indmin(max(end-nbsym,1):end-1));
rsym = indmin(end);
else
rmax = [lx,fliplr(indmax(max(end-nbsym+2,1):end))];
rmin = fliplr(indmin(max(end-nbsym+1,1):end));
rsym = lx;
end
else
if x(end) > x(indmin(end))
rmax = fliplr(indmax(max(end-nbsym,1):end-1));
rmin = fliplr(indmin(max(end-nbsym+1,1):end));
rsym = indmax(end);
else
rmax = fliplr(indmax(max(end-nbsym+1,1):end));
rmin = [lx,fliplr(indmin(max(end-nbsym+2,1):end))];
rsym = lx;
end
end
tlmin = 2*t(lsym)-t(lmin);
tlmax = 2*t(lsym)-t(lmax);
trmin = 2*t(rsym)-t(rmin);
trmax = 2*t(rsym)-t(rmax);
% in case symmetrized parts do not extend enough
if tlmin(1) > t(1) | tlmax(1) > t(1)
if lsym == indmax(1)
lmax = fliplr(indmax(1:min(end,nbsym)));
else
lmin = fliplr(indmin(1:min(end,nbsym)));
end
if lsym == 1
error('bug')
end
lsym = 1;
tlmin = 2*t(lsym)-t(lmin);
tlmax = 2*t(lsym)-t(lmax);
end
if trmin(end) < t(lx) | trmax(end) < t(lx)
if rsym == indmax(end)
rmax = fliplr(indmax(max(end-nbsym+1,1):end));
else
rmin = fliplr(indmin(max(end-nbsym+1,1):end));
end
if rsym == lx
error('bug')
end
rsym = lx;
trmin = 2*t(rsym)-t(rmin);
trmax = 2*t(rsym)-t(rmax);
end
xlmax =x(lmax);
xlmin =x(lmin);
xrmax =x(rmax);
xrmin =x(rmin);
tmin = [tlmin t(indmin) trmin];
tmax = [tlmax t(indmax) trmax];
xmin = [xlmin x(indmin) xrmin];
xmax = [xlmax x(indmax) xrmax];
%---------------------------------------------------------------------------------------------------
function [indmin, indmax, indzer] = extr(x)
%extracts the indices corresponding to extrema
% if(nargin==1)
% t=1:length(x);
% end
if size(x,1)>size(x,2)
x=x';
end
m = length(x);
if nargout > 2
x1=x(1:m-1);
x2=x(2:m);
indzer = find(x1.*x2<0);
if any(x == 0)
iz = find( x==0 );
indz = [];
if any(diff(iz)==1)
zer = x == 0;
dz = diff([0 zer 0]);
debz = find(dz == 1);
finz = find(dz == -1)-1;
indz = round((debz+finz)/2);
else
indz = iz;
end
indzer = sort([indzer indz]);
end
end
d = diff(x);
n = length(d);
d1 = d(1:n-1);
d2 = d(2:n);
indmin = find(d1.*d2<0 & d1<0)+1;
indmax = find(d1.*d2<0 & d1>0)+1;
% when two or more consecutive points have the same value we consider only one extremum in the middle of the constant area
if any(d==0)
imax = [];
imin = [];
bad = (d==0);
dd = diff([0 bad 0]);
debs = find(dd == 1);
fins = find(dd == -1);
if debs(1) == 1
if length(debs) > 1
debs = debs(2:end);
fins = fins(2:end);
else
debs = [];
fins = [];
end
end
if ~isempty(debs)
if fins(end) == m
if length(debs) > 1
debs = debs(1:(end-1));
fins = fins(1:(end-1));
else
debs = [];
fins = [];
end
end
end
lc = length(debs);
if lc > 0
for k = 1:lc
if d(debs(k)-1) > 0
if d(fins(k)) < 0
imax = [imax round((fins(k)+debs(k))/2)];
end
else
if d(fins(k)) > 0
imin = [imin round((fins(k)+debs(k))/2)];
end
end
end
end
if ~isempty(imax)
indmax = sort([indmax imax]);
end
if ~isempty(imin)
indmin = sort([indmin imin]);
end
end