Skip to content

artemkorsakov/nebula-spark-connector

 
 

Repository files navigation

NebulaGraph Spark Connector

中文版

Introduction

NebulaGraph Spark Connector 2.0/3.0 only supports NebulaGraph 2.x/3.x. If you are using NebulaGraph v1.x, please use NebulaGraph Spark Connector v1.0 .

NebulaGraph Spark Connector support spark 2.2, 2.4 and 3.0.

How to Compile

  1. Package NebulaGraph Spark Connector.

    $ git clone https://github.com/vesoft-inc/nebula-spark-connector.git
    $ cd nebula-spark-connector
    $ mvn clean package -Dmaven.test.skip=true -Dgpg.skip -Dmaven.javadoc.skip=true -pl nebula-spark-connector -am -Pscala-2.11 -Pspark-2.4

    if you want to use connector for spark 2.2.x, use the command:

    $ cd nebula-spark-connector
    $ mvn clean package -Dmaven.test.skip=true -Dgpg.skip -Dmaven.javadoc.skip=true -pl nebula-spark-connector_2.2 -am -Pscala-2.11 -Pspark-2.2
    

    if you want to use connector for spark 3.x, use the command:

    $ cd nebula-spark-connector
    $ mvn clean package -Dmaven.test.skip=true -Dgpg.skip -Dmaven.javadoc.skip=true -pl nebula-spark-connector_3.0 -am -Pscala-2.12 -Pspark-3.0
    

    After the packaging, you can see the newly generated nebula-spark-connector-3.0-SNAPSHOT.jar under the nebula-spark-connector/nebula-spark-connector/target/ directory.

New Features (Compared to NebulaGraph Spark Connector 1.0)

  • Supports more connection configurations, such as timeout, connectionRetry, and executionRetry.
  • Supports more data configurations, such as whether vertexId can be written as vertex's property, whether srcId, dstId and rank can be written as edge's properties.
  • Spark Reader Supports non-property, all-property, and specific-properties read.
  • Spark Reader Supports reading data from NebulaGraph to Graphx as VertexRD and EdgeRDD, it also supports String type vertexId.
  • NebulaGraph Spark Connector 2.0 uniformly uses SparkSQL's DataSourceV2 for data source expansion.
  • NebulaGraph Spark Connector 2.1.0 support UPDATE write mode to NebulaGraph, see Update Vertex .
  • NebulaGraph Spark Connector 2.5.0 support DELETE write mode to NebulaGraph, see Delete Vertex .
  • NebulaGraph Spark Connector for spark 3.x does not support nqgl reader from NebulaGraph.

How to Use

If you use Maven to manage your project, add one of the following dependency to your pom.xml:

<!-- connector for spark 2.4 -->
<dependency>
   <groupId>com.vesoft</groupId>
   <artifactId>nebula-spark-connector</artifactId>
   <version>3.0-SNAPSHOT</version>
</dependency>

<!-- connector for spark 2.2 -->
<dependency>
   <groupId>com.vesoft</groupId>
   <artifactId>nebula-spark-connector_2.2</artifactId>
   <version>3.0-SNAPSHOT</version>
</dependency>

<!-- connector for spark 3.0 -->
<dependency>
   <groupId>com.vesoft</groupId>
   <artifactId>nebula-spark-connector_3.0</artifactId>
   <version>3.0-SNAPSHOT</version>
</dependency>
<dependency>
   <groupId>org.scala-lang.modules</groupId>
   <artifactId>scala-collection-compat_2.12</artifactId>
   <version>2.1.1</version>
</dependency>

Write DataFrame INSERT into NebulaGraph as Vertices:

  val config = NebulaConnectionConfig
    .builder()
    .withMetaAddress("127.0.0.1:9559")
    .withGraphAddress("127.0.0.1:9669")
    .build()
  val nebulaWriteVertexConfig: WriteNebulaVertexConfig = WriteNebulaVertexConfig
    .builder()
    .withSpace("test")
    .withTag("person")
    .withVidField("id")
    .withVidAsProp(true)
    .withBatch(1000)
    .build()
  df.write.nebula(config, nebulaWriteVertexConfig).writeVertices()

Write DataFrame UPDATE into NebulaGraph as Vertices:

  val config = NebulaConnectionConfig
    .builder()
    .withMetaAddress("127.0.0.1:9559")
    .withGraphAddress("127.0.0.1:9669")
    .build()
  val nebulaWriteVertexConfig: WriteNebulaVertexConfig = WriteNebulaVertexConfig
    .builder()
    .withSpace("test")
    .withTag("person")
    .withVidField("id")
    .withVidAsProp(true)
    .withBatch(1000)
    .withWriteMode(WriteMode.UPDATE)
    .build()
  df.write.nebula(config, nebulaWriteVertexConfig).writeVertices()

Write DataFrame DELETE into NebulaGraph as Vertices:

  val config = NebulaConnectionConfig
    .builder()
    .withMetaAddress("127.0.0.1:9559")
    .withGraphAddress("127.0.0.1:9669")
    .build()
  val nebulaWriteVertexConfig: WriteNebulaVertexConfig = WriteNebulaVertexConfig
    .builder()
    .withSpace("test")
    .withTag("person")
    .withVidField("id")
    .withBatch(1000)
    .withWriteMode(WriteMode.DELETE)
    .build()
  df.write.nebula(config, nebulaWriteVertexConfig).writeVertices()

Read vertices from NebulaGraph:

  val config = NebulaConnectionConfig
    .builder()
    .withMetaAddress("127.0.0.1:9559")
    .withConnectionRetry(2)
    .build()
  val nebulaReadVertexConfig: ReadNebulaConfig = ReadNebulaConfig
    .builder()
    .withSpace("exchange")
    .withLabel("person")
    .withNoColumn(false)
    .withReturnCols(List("birthday"))
    .withLimit(10)
    .withPartitionNum(10)
    .build()
  val vertex = spark.read.nebula(config, nebulaReadVertexConfig).loadVerticesToDF()

Read vertices and edges from NebulaGraph to construct Graphx's graph:

  val config = NebulaConnectionConfig
    .builder()
    .withMetaAddress("127.0.0.1:9559")
    .build()
  val nebulaReadVertexConfig = ReadNebulaConfig
    .builder()
    .withSpace("exchange")
    .withLabel("person")
    .withNoColumn(false)
    .withReturnCols(List("birthday"))
    .withLimit(10)
    .withPartitionNum(10)
    .build()
  val nebulaReadEdgeConfig = ReadNebulaConfig
    .builder()
    .withSpace("exchange")
    .withLabel("knows1")
    .withNoColumn(false)
    .withReturnCols(List("timep"))
    .withLimit(10)
    .withPartitionNum(10)
    .build()

  val vertex = spark.read.nebula(config, nebulaReadVertexConfig).loadVerticesToGraphx()
  val edgeRDD = spark.read.nebula(config, nebulaReadEdgeConfig).loadEdgesToGraphx()
  val graph = Graph(vertexRDD, edgeRDD)

After getting Graphx's Graph, you can develop graph algorithms in Graphx like Nebula-Algorithm.

For more information on usage, please refer to Example.

PySpark with NebulaGraph Spark Connector

Below is an example of calling nebula-spark-connector jar package in pyspark.

Read in PySpark

Read from NebulaGraph with metaAddress of "metad0:9559" as a dataframe:

df = spark.read.format(
  "com.vesoft.nebula.connector.NebulaDataSource").option(
    "type", "vertex").option(
    "spaceName", "basketballplayer").option(
    "label", "player").option(
    "returnCols", "name,age").option(
    "metaAddress", "metad0:9559").option(
    "operateType", "read").option(
    "partitionNumber", 1).load()

You may then show the dataframe as follow:

>>> df.show(n=2)
+---------+--------------+---+
|_vertexId|          name|age|
+---------+--------------+---+
|player105|   Danny Green| 31|
|player109|Tiago Splitter| 34|
+---------+--------------+---+
only showing top 2 rows

Write in PySpark

Let's try a write example, by default, the writeMode is insert

write vertex

df.write.format("com.vesoft.nebula.connector.NebulaDataSource").option(
    "type", "vertex").option(
    "spaceName", "basketballplayer").option(
    "label", "player").option(
    "vidPolicy", "").option(
    "vertexField", "_vertexId").option(
    "batch", 1).option(
    "metaAddress", "metad0:9559").option(
    "graphAddress", "graphd1:9669").option(
    "passwd", "nebula").option(
    "user", "root").save()

delete vertex

For delete or update write mode, we could(for instance)specify with writeMode as delete like:

df.write.format("com.vesoft.nebula.connector.NebulaDataSource").option(
    "type", "vertex").option(
    "spaceName", "basketballplayer").option(
    "label", "player").option(
    "vidPolicy", "").option(
    "vertexField", "_vertexId").option(
    "batch", 1).option(
    "metaAddress", "metad0:9559").option(
    "graphAddress", "graphd1:9669").option(
    "passwd", "nebula").option(
    "writeMode", "delete").option(
    "user", "root").save()

write edge

df.write.format("com.vesoft.nebula.connector.NebulaDataSource")\
    .mode("overwrite")\
    .option("srcPolicy", "")\
    .option("dstPolicy", "")\
    .option("metaAddress", "metad0:9559")\
    .option("graphAddress", "graphd:9669")\
    .option("user", "root")\
    .option("passwd", "nebula")\
    .option("type", "edge")\
    .option("spaceName", "basketballplayer")\
    .option("label", "server")\
    .option("srcVertexField", "srcid")\
    .option("dstVertexField", "dstid")\
    .option("randkField", "")\
    .option("batch", 100)\
    .option("writeMode", "insert").save()   # delete to delete edge, update to update edge

delete edge

df.write.format("com.vesoft.nebula.connector.NebulaDataSource")\
    .mode("overwrite")\
    .option("srcPolicy", "")\
    .option("dstPolicy", "")\
    .option("metaAddress", "metad0:9559")\
    .option("graphAddress", "graphd:9669")\
    .option("user", "root")\
    .option("passwd", "nebula")\
    .option("type", "edge")\
    .option("spaceName", "basketballplayer")\
    .option("label", "server")\
    .option("srcVertexField", "srcid")\
    .option("dstVertexField", "dstid")\
    .option("randkField", "")\
    .option("batch", 100)\
    .option("writeMode", "delete").save()   # delete to delete edge, update to update edge

Options in PySpark

For more options, i.e. delete edge with vertex being deleted, refer to nebula/connector/NebulaOptions.scala , we could know it's named as deleteEdge in option.

  /** write config */
  val RATE_LIMIT: String   = "rateLimit"
  val VID_POLICY: String   = "vidPolicy"
  val SRC_POLICY: String   = "srcPolicy"
  val DST_POLICY: String   = "dstPolicy"
  val VERTEX_FIELD         = "vertexField"
  val SRC_VERTEX_FIELD     = "srcVertexField"
  val DST_VERTEX_FIELD     = "dstVertexField"
  val RANK_FIELD           = "randkField"
  val BATCH: String        = "batch"
  val VID_AS_PROP: String  = "vidAsProp"
  val SRC_AS_PROP: String  = "srcAsProp"
  val DST_AS_PROP: String  = "dstAsProp"
  val RANK_AS_PROP: String = "rankAsProp"
  val WRITE_MODE: String   = "writeMode"
  val DELETE_EDGE: String  = "deleteEdge"

Call NebulaGraph Spark Connector in PySpark shell and .py file

Also, below are examples on how we run above code with pyspark shell or in python code files:

  • Call with PySpark shell:
/spark/bin/pyspark --driver-class-path nebula-spark-connector-3.0.0.jar --jars nebula-spark-connector-3.0.0.jar
  • In Python code:
from pyspark.sql import SparkSession

spark = SparkSession.builder.config(
    "spark.jars","/path_to/nebula-spark-connector-3.0.0.jar").config(
    "spark.driver.extraClassPath","/path_to/nebula-spark-connector-3.0.0.jar").appName(
    "nebula-connector").getOrCreate()

# read vertex
df = spark.read.format(
  "com.vesoft.nebula.connector.NebulaDataSource").option(
    "type", "vertex").option(
    "spaceName", "basketballplayer").option(
    "label", "player").option(
    "returnCols", "name,age").option(
    "metaAddress", "metad0:9559").option(
    "partitionNumber", 1).load()

If you are using nebula-spark-connector 3.6.0 version, you need to import nebula-spark-common 3.6.0 too, or package the nebula-spark-connector-with-dependencies jar by yourself and import it into your Spark config.

Compatibility matrix

There are the version correspondence between NebulaGraph Spark Connector and Nebula、Spark:

NebulaGraph Spark Connector Version NebulaGraph Version Spark Version
nebula-spark-connector-2.0.0.jar 2.0.0, 2.0.1 2.4.*
nebula-spark-connector-2.0.1.jar 2.0.0, 2.0.1 2.4.*
nebula-spark-connector-2.1.0.jar 2.0.0, 2.0.1 2.4.*
nebula-spark-connector-2.5.0.jar 2.5.0, 2.5.1 2.4.*
nebula-spark-connector-2.5.1.jar 2.5.0, 2.5.1 2.4.*
nebula-spark-connector-2.6.0.jar 2.6.0, 2.6.1 2.4.*
nebula-spark-connector-2.6.1.jar 2.6.0, 2.6.1 2.4.*
nebula-spark-connector-3.0.0.jar 3.x 2.4.*
nebula-spark-connector-3.3.0.jar 3.x 2.4.*
nebula-spark-connector_2.2-3.3.0.jar 3.x 2.2.*
nebula-spark-connector-3.4.0.jar 3.x 2.4.*
nebula-spark-connector_2.2-3.4.0.jar 3.x 2.2.*
nebula-spark-connector-3.6.0.jar 3.x 2.4.*
nebula-spark-connector_2.2-3.6.0.jar 3.x 2.2.*
nebula-spark-connector_3.0-3.6.0.jar 3.x 3..
nebula-spark-connector-3.0-SNAPSHOT.jar nightly 2.4.*
nebula-spark-connector_2.2-3.0-SNAPSHOT.jar nightly 2.2.*
nebula-spark-connector_3.0-3.0-SNAPSHOT.jar nightly 3.*

Performance

We use LDBC dataset to test nebula-spark-connector's performance, here's the result.

  • For reader

We choose tag Comment and edge REPLY_OF for space sf30 and sf100 to test the connector reader. And the application's resources are: standalone mode with three workers, 2G driver-memory, 3 num-executors, 30G executor-memory and 20 executor-cores. The ReadNebulaConfig has 2000 limit and 100 partitionNum, the same partition number with NebulaGraph space parts.

data type ldbc 67.12million with No Property ldbc 220 million with No Property ldbc 67.12million with All Property ldbc 220 million with All Property
vertex 9.405s 64.611s 13.897s 57.417s
edge 10.798s 71.499s 10.244s 67.43s
  • For writer

We choose ldbc comment.csv to write into tag Comment, choose comment_replyOf_post.csv and comment_replyOf_comment.csv to write into edge REPLY_OF. And the application's resources are: standalone mode with three workers, 2G driver-memory, 3 num-executors, 30G executor-memory and 20 executor-cores. The writeConfig has 2000 batch sizes, and the DataFrame has 60 partitions.

data type ldbc 67.12million with All Property ldbc 220 million with All Property
vertex 66.578s 112.829s
edge 39.138s 51.198s

Note: ldbc edge for REPLY_OF has no property.

How to Contribute

NebulaGraph Spark Connector is a completely opensource project, opensource enthusiasts are welcome to participate in the following ways:

  • Go to NebulaGraph Forum to discuss with other users. You can raise your own questions, help others' problems, share your thoughts.
  • Write or improve documents.
  • Submit code to add new features or fix bugs.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Scala 100.0%