-
Notifications
You must be signed in to change notification settings - Fork 3
/
ImpulseWave.nb
1225 lines (1181 loc) · 59.2 KB
/
ImpulseWave.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 10.4' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 60471, 1217]
NotebookOptionsPosition[ 59352, 1174]
NotebookOutlinePosition[ 59720, 1190]
CellTagsIndexPosition[ 59677, 1187]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell["Time impulse multiple scattering from 2D disks", "Chapter",
CellChangeTimes->{{3.66461395798136*^9, 3.664613981807877*^9},
3.664628648742505*^9}],
Cell[BoxData[{
RowBox[{"ClearAll", "[", "\"\<Global`*\>\"", "]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Get", "[",
RowBox[{
RowBox[{"NotebookDirectory", "[", "]"}], "<>",
"\"\<../src/MultipleScattering2D.wl\>\""}], "]"}], ";"}]}], "Input",
CellChangeTimes->{{3.664613979628768*^9, 3.664614011149392*^9}, {
3.664628667730894*^9, 3.6646286687795963`*^9}, {3.71915203873402*^9,
3.719152047539002*^9}, {3.7191551562970867`*^9, 3.7191551566370983`*^9}}],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"radius", "=", "0.1"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"N0", "=", "3"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"NParticles", "=", "4"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"width", "=", "3"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"height", "=", "2"}], ";"}], "\[IndentingNewLine]"}], "\n",
RowBox[{
RowBox[{"Xs", " ", "=",
RowBox[{"GenerateParticles", "[",
RowBox[{"NParticles", ",", "radius", ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"-", "width"}], "/", "2"}], ",",
RowBox[{"width", "/", "2"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",", "height"}], "}"}]}], "}"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{"DrawScatterers", "[",
RowBox[{"Xs", ",", "0.1"}], "]"}], "\[IndentingNewLine]"}], "Input",
CellChangeTimes->{{3.664613979628768*^9, 3.6646140406250772`*^9}, {
3.664629203993202*^9, 3.664629204631304*^9}, {3.664629291795732*^9,
3.664629292908368*^9}, {3.6646295656585503`*^9, 3.66462960186559*^9}, {
3.664629660155437*^9, 3.6646296632342463`*^9}, {3.6649683828947*^9,
3.664968398739649*^9}, {3.6649684353997307`*^9, 3.664968457977792*^9}, {
3.664968488065628*^9, 3.664968497044508*^9}, 3.66496925969514*^9, {
3.664969296463984*^9, 3.664969307850336*^9}, {3.664969658063199*^9,
3.664969662911501*^9}, {3.664969854803885*^9, 3.664969861818451*^9}, {
3.664970070319316*^9, 3.664970071524781*^9}, {3.664970192516755*^9,
3.664970193566002*^9}, {3.6661022714617558`*^9, 3.666102280410223*^9}, {
3.666102360743903*^9, 3.666102377657683*^9}, {3.6661025394188766`*^9,
3.666102539821929*^9}, {3.6661026162668552`*^9, 3.666102651205793*^9}, {
3.719152067152289*^9, 3.719152085809593*^9}, {3.719152741739546*^9,
3.719152745590946*^9}, {3.719152965269393*^9, 3.719152966307921*^9}, {
3.719155261444965*^9, 3.7191552615544653`*^9}}],
Cell[BoxData[
GraphicsBox[
{GrayLevel[0.5], DiskBox[{-0.9224714138946695, 0.43621052811634886`}, 0.1],
DiskBox[{-0.025320318115254814`, 1.2629561614277653`}, 0.1],
DiskBox[{-0.8833598441456498, 0.8876449776507078}, 0.1],
DiskBox[{-0.994602144625309, 1.4189801314363804`}, 0.1]},
Axes->True,
AxesLabel->{
FormBox["\"x\"", TraditionalForm],
FormBox["\"y\"", TraditionalForm]}]], "Output",
CellChangeTimes->{{3.6661026387239647`*^9, 3.666102651457638*^9}, {
3.719152960962282*^9, 3.7191529666614857`*^9}, {3.7191552569561977`*^9,
3.71915526191402*^9}, {3.7191564707309217`*^9, 3.719156477395131*^9},
3.719156785331175*^9, 3.719157565655119*^9}]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{"(*",
RowBox[{"Warning", " ", "takes", " ", "a", " ",
RowBox[{"while", "!"}]}], "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"options", "=",
RowBox[{"{", "\[IndentingNewLine]",
RowBox[{
RowBox[{"\"\<MaxFrequencySamples\>\"", "\[Rule]", " ", "45"}], ",",
"\[IndentingNewLine]",
RowBox[{"\"\<PrintChecks\>\"", "\[Rule]", " ", "False"}], ",",
"\[IndentingNewLine]",
RowBox[{"\"\<SaveGIF\>\"", "\[Rule]", " ", "True"}], ",",
"\[IndentingNewLine]",
RowBox[{"\"\<SaveData\>\"", "\[Rule]", " ", "True"}], ",",
"\[IndentingNewLine]",
RowBox[{"\"\<MaxFrequency\>\"", "\[Rule]", " ",
RowBox[{"1.", "/", "radius"}]}], ",", "\[IndentingNewLine]",
RowBox[{"\"\<MaxTime\>\"", "\[Rule]", " \[InvisibleSpace]", "2"}], ",",
"\[IndentingNewLine]",
RowBox[{"(*",
RowBox[{
RowBox[{"\"\<MaxTime\>\"", "\[Rule]", " \[InvisibleSpace]", "10"}],
","}], "*)"}], "\[IndentingNewLine]",
RowBox[{"(*",
RowBox[{
RowBox[{"\"\<MeshSize\>\"", "\[Rule]",
RowBox[{"radius", "/", "3"}]}], ","}], "*)"}],
"\[IndentingNewLine]",
RowBox[{"\"\<MeshSize\>\"", "\[Rule]", "radius"}], ",",
"\[IndentingNewLine]",
RowBox[{
"\"\<BoundaryCondition\>\"", "\[Rule]", " ", "\"\<Dirichlet\>\""}],
",",
RowBox[{"(*",
RowBox[{
RowBox[{
"\"\<BoundaryCondition\>\"", "\[Rule]", " ", "\"\<Neumann\>\""}],
","}], "*)"}], "\[IndentingNewLine]",
RowBox[{"(*",
RowBox[{"\"\<MaxTimeSamples\>\"", "\[Rule]", " ", "20"}], "*)"}],
"\[IndentingNewLine]",
RowBox[{"\"\<MaxTimeSamples\>\"", "\[Rule]", " ", "3"}]}],
"\[IndentingNewLine]",
RowBox[{"(*",
RowBox[{",",
RowBox[{"\"\<MaxRadius\>\"", "\[Rule]", "3"}]}], "*)"}],
"\[IndentingNewLine]", "}"}]}], ";"}], "\n",
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"x0", ",", "x1"}], "}"}], ",",
RowBox[{"{",
RowBox[{"y0", ",", "y1"}], "}"}]}], "}"}], ",", "listWaves"}],
"}"}], "=", " ",
RowBox[{"ListWavesDueToImpulse", "[",
RowBox[{"Xs", ",", " ", "radius", ",", "N0", ",", "options"}], "]"}]}],
";"}]}]}]], "Input",
CellChangeTimes->{{3.664613979628768*^9, 3.6646140406250772`*^9}, {
3.664629203993202*^9, 3.664629204631304*^9}, {3.664629291795732*^9,
3.664629292908368*^9}, {3.6646295656585503`*^9, 3.66462960186559*^9}, {
3.664629660155437*^9, 3.6646296632342463`*^9}, {3.6649683828947*^9,
3.664968398739649*^9}, {3.6649684353997307`*^9, 3.664968457977792*^9}, {
3.664968488065628*^9, 3.664968497044508*^9}, 3.66496925969514*^9, {
3.664969296463984*^9, 3.664969307850336*^9}, {3.664969658063199*^9,
3.664969662911501*^9}, {3.664969854803885*^9, 3.664969861818451*^9}, {
3.664970070319316*^9, 3.664970071524781*^9}, {3.664970192516755*^9,
3.664970193566002*^9}, {3.6661022714617558`*^9, 3.666102280410223*^9}, {
3.666102360743903*^9, 3.666102377657683*^9}, {3.6661025394188766`*^9,
3.666102539821929*^9}, {3.6661026162668552`*^9, 3.666102617542699*^9},
3.666102686122366*^9, {3.6661028480511837`*^9, 3.666102898313943*^9}, {
3.719152770050889*^9, 3.719152820643752*^9}, {3.719153191604761*^9,
3.719153215293539*^9}, {3.719155288141226*^9, 3.719155365587184*^9}, {
3.719156099640332*^9, 3.719156100183476*^9}, {3.719156547193016*^9,
3.719156584596562*^9}, 3.7191566992996597`*^9, {3.719156799062497*^9,
3.7191568103715267`*^9}, 3.719157790142205*^9, {3.7191579739338818`*^9,
3.719157977554886*^9}, {3.7191580141912737`*^9, 3.71915801872569*^9}}],
Cell[CellGroupData[{
Cell[BoxData["options"], "Input",
CellChangeTimes->{{3.664613979628768*^9, 3.6646140406250772`*^9}, {
3.664629203993202*^9, 3.664629204631304*^9}, {3.664629291795732*^9,
3.664629292908368*^9}, {3.6646295656585503`*^9, 3.66462960186559*^9}, {
3.664629660155437*^9, 3.6646296632342463`*^9}, {3.6649683828947*^9,
3.664968398739649*^9}, {3.6649684353997307`*^9, 3.664968457977792*^9}, {
3.664968488065628*^9, 3.664968497044508*^9}, 3.66496925969514*^9, {
3.664969296463984*^9, 3.664969307850336*^9}, {3.664969658063199*^9,
3.664969662911501*^9}, {3.664969854803885*^9, 3.664969861818451*^9}, {
3.664970070319316*^9, 3.664970071524781*^9}, {3.664970192516755*^9,
3.664970193566002*^9}, {3.6661022714617558`*^9, 3.666102280410223*^9}, {
3.666102360743903*^9, 3.666102377657683*^9}, {3.6661025394188766`*^9,
3.666102539821929*^9}, {3.6661026162668552`*^9, 3.666102617542699*^9},
3.666102686122366*^9, {3.6661028480511837`*^9, 3.666102898313943*^9}, {
3.719152770050889*^9, 3.719152820643752*^9}, {3.719153191604761*^9,
3.719153215293539*^9}, {3.719155288141226*^9, 3.719155365587184*^9}, {
3.719156099640332*^9, 3.719156100183476*^9}, {3.719156547193016*^9,
3.719156584596562*^9}, 3.7191566992996597`*^9, {3.719156799062497*^9,
3.7191568103715267`*^9}, {3.719157790142205*^9, 3.719157791590557*^9}}],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"\<\"PrintChecks\"\>", "\[Rule]", "False"}], ",",
RowBox[{"\<\"SaveGIF\"\>", "\[Rule]", "True"}], ",",
RowBox[{"\<\"SaveData\"\>", "\[Rule]", "True"}], ",",
RowBox[{"\<\"MaxFrequency\"\>", "\[Rule]", "10.`"}], ",",
RowBox[{"\<\"MaxTime\"\>", "\[Rule]", "2"}], ",",
RowBox[{"\<\"MeshSize\"\>", "\[Rule]", "0.1`"}], ",",
RowBox[{"\<\"BoundaryCondition\"\>", "\[Rule]", "\<\"Dirichlet\"\>"}], ",",
RowBox[{"\<\"MaxTimeSamples\"\>", "\[Rule]", "3"}]}], "}"}]], "Output",
CellChangeTimes->{3.719157792317224*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell["Import wave and then plot", "Subsection",
CellChangeTimes->{{3.6646142844309607`*^9, 3.664614306049327*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"\[IndentingNewLine]",
RowBox[{"(*",
RowBox[{
"Import", " ", "waves", " ", "combined", " ", "in", " ", "a", " ",
"rectangle"}], "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{"Header", ",", "options", ",", "listWaves"}], "}"}], "=",
RowBox[{"ImportListWaves", "[",
RowBox[{
RowBox[{"Length", "[", "Xs", "]"}], ",", "N0", ",",
RowBox[{"\"\<MaxFrequencySamples\>\"", "/.", "options"}]}], "]"}]}],
";"}], "\[IndentingNewLine]", "options", " ",
RowBox[{"(*", " ",
RowBox[{
RowBox[{"<",
RowBox[{
RowBox[{"-", " ", "extra"}], " ", "info", " ", "added", " ", "to", " ",
"options"}]}], ",", " ",
RowBox[{"have", " ", "a", " ", "look"}]}], "*)"}],
"\[IndentingNewLine]"}]}]], "Input",
CellChangeTimes->{{3.6646142844309607`*^9, 3.664614318175445*^9}, {
3.664614479042283*^9, 3.664614530075151*^9}, {3.664629530882948*^9,
3.664629551414544*^9}, {3.664968424758464*^9, 3.664968425846156*^9}, {
3.664970115341907*^9, 3.664970115454965*^9}, {3.6663498328465557`*^9,
3.666349838315153*^9}, {3.719152904049255*^9, 3.719152933223352*^9}, {
3.719156713694707*^9, 3.719156719128701*^9}, 3.719157995909644*^9}],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"\<\"PrintChecks\"\>", "\[Rule]", "False"}], ",",
RowBox[{"\<\"SaveGIF\"\>", "\[Rule]", "True"}], ",",
RowBox[{"\<\"SaveData\"\>", "\[Rule]", "True"}], ",",
RowBox[{"\<\"MaxFrequency\"\>", "\[Rule]", "10.`"}], ",",
RowBox[{"\<\"MaxTime\"\>", "\[Rule]", "2.`"}], ",",
RowBox[{"\<\"MeshSize\"\>", "\[Rule]", "0.1`"}], ",",
RowBox[{"\<\"BoundaryCondition\"\>", "\[Rule]", "\<\"Dirichlet\"\>"}], ",",
RowBox[{"\<\"MaxTimeSamples\"\>", "\[Rule]", "3.`"}], ",",
RowBox[{"\<\"ImpulsePosition\"\>", "\[Rule]",
RowBox[{"{",
RowBox[{"0.`", ",", "0.`"}], "}"}]}], ",",
RowBox[{"\<\"PlotAmplitudeRatio\"\>", "\[Rule]", "0.8`"}], ",",
RowBox[{"\<\"MaxFrequencySamples\"\>", "\[Rule]", "45.`"}], ",",
RowBox[{"\<\"MaxRadius\"\>", "\[Rule]", "2.972545649963486`"}], ",",
RowBox[{"\<\"ImpulseFunction\"\>", "\[Rule]",
RowBox[{"(",
RowBox[{
RowBox[{"If", "[",
RowBox[{
RowBox[{
"0.`", "\[LessEqual]", "#1", "\[LessEqual]", "0.31070696573964984`"}],
",", "1.`", ",", "0.`"}], "]"}], "&"}], ")"}]}], ",",
RowBox[{"\<\"ImpulsePeriod\"\>", "\[Rule]", "0.31070696573964984`"}], ",",
RowBox[{"AspectRatio", "\[Rule]", "0.8632148903228439`"}], ",",
RowBox[{"\<\"RangeTime\"\>", "\[Rule]",
RowBox[{"{",
RowBox[{
"0.`", ",", "0.3127783455112475`", ",", "0.625556691022495`", ",",
"0.9383350365337425`", ",", "1.25111338204499`", ",",
"1.5638917275562374`"}], "}"}]}]}], "}"}]], "Output",
CellChangeTimes->{
3.666349839646612*^9, 3.7191558961720123`*^9, {3.719157998680838*^9,
3.719158022207735*^9}}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"plotSequence", "=", " ",
RowBox[{"ListPlotSequence", "[",
RowBox[{"listWaves", ",", " ",
RowBox[{"If", "[",
RowBox[{
RowBox[{"\"\<RangeTime\>\"", "/.", "options"}], ",", " ",
RowBox[{"\"\<RangeTime\>\"", "/.", "options"}], ",", " ",
RowBox[{"{", "}"}]}], "]"}], ",", "options"}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"listplots", "=", " ",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"Show", "@@", "#"}], ")"}], "&"}], "/@",
RowBox[{"Thread", "[",
RowBox[{"{",
RowBox[{"plotSequence", ",",
RowBox[{"DrawScatterers", "[",
RowBox[{"Xs", ",", "0.1"}], "]"}]}], "}"}], "]"}]}]}],
";"}], "\[IndentingNewLine]",
RowBox[{"listplots", "[",
RowBox[{"[", "4", "]"}], "]"}]}], "Input",
CellChangeTimes->{{3.6646142844309607`*^9, 3.664614318175445*^9}, {
3.664614479042283*^9, 3.664614530075151*^9}, {3.664629530882948*^9,
3.664629531518715*^9}, 3.6649692110152187`*^9, {3.664969384231008*^9,
3.664969384965613*^9}, {3.664969800729143*^9, 3.664969823812778*^9},
3.719155423814866*^9, {3.719158076737238*^9, 3.719158087731552*^9}, {
3.7191581318107758`*^9, 3.71915825457316*^9}}],
Cell[BoxData[
TemplateBox[{GraphicsBox[{
GraphicsComplexBox[CompressedData["
1:eJxd1l/oX3Udx/FfszBm0UU/JhKKUdEuEnLzYjfrWDemDHMGEW3QWq2kP2RW
FPMvReFNJjRss5Cg1h8hE9efYYRrokk6XIvcqhH+3CzXaB3P2Tye6dnJxufx
ls/76svj5n3xecL3vN66+fPXblm2sLCw6ZyFhf//rjv0thM3fHxhz6HVV+76
2juOPsQ7F1bc9oHu6fCRux/ZseaWv4dvuuyjqw+c/5fwu77//I6Dm/eFNz35
9n3L79oTvm1xz7L2ynvCX912bPuF5z7Q8Ou/+94dG/Y/Ev73peeu3nb1n8LX
bP/cjtO/PBjefebP86a3/CN856oLdx25/Jnw3i3X/HPFl54Nv7D96xdc9ZPn
wiuf+PW6m/92PLxxPnbr/W/8b/j9O+746xcufj68tGrlF897sAvf+MTv37Dz
gyfDi5/c8OP3/OdU+L75ZHPom0O6N4afOXvvdPims/deTvemdG9uzqy4733r
Lpkf0ov1Yr1YL9aL9WK9WC/Wi/VivVgv1ov1Yr1YL9aL9WK9WC/Wi/Wq741h
veI9S6/63pTuzc2Wmxd/9sB3pujFerFerBfrxXqxXqwX68V6sV6sF+vFerFe
rBfrxXqxXqwX68V61ffGsF7xnqVXfW9K9+bm8SNb33TB6ZeiF+vFerFerBfr
xXqxXqwX68V6sV6sF+vFerFerBfrxXqxXqwX61XfG8N6xXuWXvW9Kd2bm1VX
LX351k2noxfrxXqxXqwX68V6sV6sF+vFerFerBfrxXqxXqwX68V6sV6sF+tV
3xvDesV7ll71vSndm5vt919x+NlHX4xerBfrxXqxXqwX68V6sV6sF+vFerFe
rBfrxXqxXqwX68V6sV6sV31vDOsV71l61femdM/eGNLeGNLeGNLeGNLeGNLe
GNLeGNLeGNLeGNLeGNLeGNLeGNLeGNLeGNLeGNLeGNLeGNLeGNLeGNLeGNLe
GNLeGNLeGNLeGNLeGNLeGNLeGKLXJ85+z05FL9aL9WK9WC/Wi/VivVgv1ov1
Yr1YL9aL9WK9WC/Wi/VivVgv1qu+N4b1ivcsvep7U7pnb/Rpb/Rpb/Rpb/Rp
b/Rpb/Rpb/Rpb/Rpb/Rpb/Rpb/Rpb/Rpb/Rpb/Rpb/Rpb/Rpb/Rpb/Rpb/Rp
b/Rpb/Rpb/Rpb/Rpb/Rpb/Rpb/Rpb/Rpb3Rpb3Rpb3Rpb3Rpb3Rpb3Rpb3Rp
b3Rpb3Rpb3Rpb3Rpb3Rpb3Rpb3Rpb3Rpb3Rpb3Rpb3Rpb3Rpb3Rpb3Rpb3Rp
b3Rpb3Rpb3Rpb3Rpb3Rpb7Rpb7Rpb7Rpb7Rpb7Rpb7Rpb7Rpb7Rpb7Rpb7Rp
b7Rpb7Rpb7Rpb7Rpb7Rpb7Rpb7Rpb7Rpb7Rpb7Rpb7Rpb7Rpb7Rpb7Rpb7Rp
b7Rpb7TR6+VLNn5j+0dORC/Wi/VivVgv1ov1Yr1YL9aL9WK9WC/Wi/VivVgv
1ov1Yr1YL9arvjeG9Yr3LL3qe1O6NzePnV557ZZ3Ho9erBfrxXqxXqwX68V6
sV6sF+vFerFerBfrxXqxXqwX68V6sV6sV31vDOsV71l61femdG9u7vrDqYtW
nfxX9GK9WC/Wi/VivVgv1ov1Yr1YL9aL9WK9WC/Wi/VivVgv1ov1Yr3qe2NY
r3jP0qu+N6V7c7N5297jZ/YcjV6sF+vFerFerBfrxXqxXqwX68V6sV6sF+vF
erFerBfrxXqxXqxXfW8M6xXvWXrV96Z0b27e/bFv7378W0vRi/VivVgv1ov1
Yr1YL9aL9WK9WC/Wi/VivVgv1ov1Yr1YL9aL9arvjWG94j1Lr/relO7NzYsb
di+/9FeHoxfrxXqxXqwX68V6sV6sF+vFerFerBfrxXqxXqwX68V6sV6sF+tV
3xvDesV7ll71vSndm5s7T63/0R+vfip6sV6sF+vFerFerBfrxXqxXqwX68V6
sV6sF+vFerFerBfrxXqxXvW9MaxXvGfpVd+b0r25+fBFB298bP+T0Yv1Yr1Y
L9aL9WK9WC/Wi/VivVgv1ov1Yr1YL9aL9WK9WC/Wi/Wq741hveI9S6/63pTu
zc3t65f/4qVzHo5erBfrxXqxXqwX68V6sV6sF+vFerFerBfrxXqxXqwX68V6
sV6sV31vDOsV71l61femdG9uFt78wu2/PfzT6MV6sV6sF+vFerFerBfrxXqx
XqwX68V6sV6sF+vFerFerBfrxXrV98awXvGepVd9b0r35ubyi9fe+5UP3dvo
xXqxXqwX68V6sV6sF+vFerFerBfrxXqxXqwX68V6sV6sF+vFetX3xrBe8Z6l
V31vSvfm5unFjb/59OaHoxfrxXqxXqwX68V6sV6sF+vFerFerBfrxXqxXqwX
68V6sV6sF+tV3xvDesV7ll71vSndm5tD1y/u/d75+6MX68V6sV6sF+vFerFe
rBfrxXqxXqwX68V6sV6sF+vFerFerBfrVd8bw3rFe5Ze9b0p3Xvl//Dg1pXL
bnnq1f/D4vg/LI7/w+L4PyyO/8Pi+D8sjv/D4vg/LI7/w+L4PyyO/8Pi+D8s
jv/D4vg/LI7/w+L4PyyO/8Pi+D8sjv/D4vg/LI7/w+L4P6zujeH4P/Se/g+r
e1O6Nzc/WLt0x3VHD0cv1ov1Yr1YL9aL9WK9WC/Wi/VivVgv1ov1Yr1YL9aL
9WK9WC/Wq743hvWK9yy96ntTujc3rz3ww62f2rkUvVgv1ov1Yr1YL9aL9WK9
WC/Wi/VivVgv1ov1Yr1YL9aL9WK9WK/63hjWK96z9KrvTene3Kx53cGf333o
aPRivVgv1ov1Yr1YL9aL9WK9WC/Wi/VivVgv1ov1Yr1YL9aL9WK96ntjWK94
z9Krvjele3Pz2TXLl/ad91z0Yr1YL9aL9WK9WC/Wi/VivVgv1ov1Yr1YL9aL
9WK9WC/Wi/Vivep7Y1iveM/Sq743pXuvfL8+s3bxNc3xV79fxfH9Ko7vV3F8
v4rj+1Uc36/i+H4Vx/erOL5fxfH9Ko7vV3F8v4rj+1Uc36/i+H4Vx/erOL5f
xfH9Ko7vV3F8v4rj+1Uc36/q3hiO75f39P2q7k3p3tzsv+f6Ky674UT0Yr1Y
L9aL9WK9WC/Wi/VivVgv1ov1Yr1YL9aL9WK9WC/Wi/Vivep7Y1iveM/Sq743
pXtzs+zY+t/tOtBGL9aL9WK9WC/Wi/VivVgv1ov1Yr1YL9aL9WK9WC/Wi/Vi
vVgv1qu+N4b1ivcsvep7U7o3N/8DcRlkcA==
"], {{{
EdgeForm[],
GrayLevel[0.8],
GraphicsGroupBox[{
PolygonBox[CompressedData["
1:eJxNnHf4j2Ubxp/n+WZlZO+995Y9f/bO3mREEcmWEdJbVlYIWSUre69CdslI
FJlFRGYpkt7rPO7Pc3y/f1zHfY3zOu/rua/TDx3eN0fXfs36Bp7nNYzveRE7
y5i9aJbJc3FWs+fwsxDLD4gLmL1glswsu1k8s2zgstGbjbz8JGZ5zfLhJybO
DKcPb0AuPr3iTmSWyyy3WQ6znGYJOBPiq5bH7HnwufHzclceOLPDEZ8zAbXE
4JMwY1LuTMg9yuUnL44KZhWZtSyzZ8EvBzYZ+AL4+fEL8nZZwGYll5x8Bd6u
PPXyYGqCKwBWfiHq4dsXNitilhJLQa4wfiHmrsT3pwJflDMVfXVjcsnpS8G3
V6Q3O/dq3r/MfjJ7xPsn5P0q8X45iKuwG51V8YuZFTdLA6Yy9Wrspir1tGDS
EpegNzWz1uCN88GTE640YIrBlYd7q9MjfF7uq46fh7iUWQaz9OSrg4/jrhrM
o1nSmZXkLEGf+kvj68zITDl5m6ZmL3nu114d9lTbczpq5rn9l8NvbtbZrJbn
tFCAGeLAqF6emjAFybUgn4p30luUYRbNlAm/TAxvHByF4KnInlvCVwHOQsxb
mPmlmyJYmFNvK763ELy14aoAn+qtwVSk1op5xVmPemUwHcwGmw0xq2/WwHOa
KM6elasCvg089ag1YD/CtjVr5zldVCGW34k36MgbNTZrAm8xuKrA3RY+8TZk
59JBI/INY+KSxB3grkG+MX2NuU9+e89psB1Wjdmq018Djjj86vR0gKMJO+0X
s7fO7Fjf9yL1plgZenqb9fGcLoebdaFPGnzdi+qwC7tU3Bf+5mD6ck8cd/Vl
jhb01aZXO37DrL9ZV8/p5WVyLelphR/i3vScFoTv5jl9tGHXreHuAk9dOLuS
f5m4Ou/ZHv7+9HZjt3XZq3gH4OscyP1twAvb3YtqUGcPcIPYW1ti+a/yxo3B
vUJfD3q7k2voRfWkuCd87eFpSE7a6cWpuAOYweRf5a7GMdjBYMSnXz9DPaej
DsQd+dY2fGsTeF4D2wnMBHaiHUkr0pC00xnMMHpfozacmvLSyHue00Vf/Pd5
z268wzB4dOeHZm/B0Rs+8erncvhz912z/3lOu+8zXz/6tPcunIpHmE1k/gnk
lZNO+lObZDaS3AjmfB/O/vROZN6uYIfD34WZSjGjaqPAincybytdTDH7wOxt
z+lgNN8/mrg7vaPBjPGcJgaypynEPaiP4r45ZtPNZvCGU8BPxgYwg+6e6jk9
jPOcRsZ6Tk9j8Kd5TjfCDcGfhj+Ne9T7jue0MhDeQXD0ZMZX4R9H73Rmmwrn
IPYqnvFms3j7cPfSxEyzxWZLPLdv7b03+Jlg9M3r6Jd2+oB5l3g42GVme832
cedrzDgDnqHkxtOv/X9i9qnZZ57b/1JinRPAfIqv2Wezj6XglZ9Ev+5/D873
mW0W3zuHvtnwzMLvyU56wTMRLuE/Yv/L2bf2vAJ/Ofhl5IUd7UW1Nddz+vmA
npX4U4jfYW8LzOaBnUvvR/hjyM/D5pP7AL6p5MZ6UW0p/thslee0NJU7xpEf
yzkOjlVgpJ3PzVbjTyNexrdOhmchs08HO4P9fMlOtNtFntPGGs/pYgZ94+ld
TF24UHOL2Zfwa802soMN3LMGnl1muz2n1/HwLmJO7W0v/TPp+dpsvef0K118
wbzryM9i9j3Mr9xs8nvh3ENuPfN8Ck/Y9xm9s6nPgf9DZtGf4/Xn+fPsdg7f
d9nsitlBsy3seLPZfs9p5CvP6WAT+U3EoT4206P3OWR2mJ4V7GwhO9sO5nNw
G+ESzz56lvOG+/APgpc+pJetZtuYU/58uD4Hu527toHfRryS7zmAv4J4PrNv
oXcH8x6AbxW7+4Z311v/aHbO7Ajvqv0exVduETw7eYsjYM6a/eA53SyiLr3t
4lSs34P061k/w5fE1FfDtQbuRcy5jnuPMuOGmDk14x7O8/g69+L/hH+ePvUf
43vXwamfI/q9Sr/HXQej+he8w5e85wHeaivvPh/OY+xZGjludoIz1JH2fMFz
u98E9lvqJ9jLJXZ1EdsPfh/z6ztOs7/v6D8O3wV6hD8Jn3hPeU4bW7Et1E9S
U+6q57R1Bewp+Ldxbue7Nd9l/P3EV+g9yN7E9TO72868er8/2M85/D/NrvH2
v3hOE9+bneHcCYe0tIv8Ts5d9Kj3CO+wkR3s450uMM8hZjoN7w7mv8zMP8Ml
ngdmDz2nXWngV8/pQP7XzOv7Ln+db9F3nOd8hH+M3hv0HaV3N7OfpX4M/sPM
oRn061u/F6yifoPvG2P3vmL2ttnfFj9m3zfNfkMH+mb9t4y/8X8ivkBO+BPg
b5k9YYfieso7XaEe6vc4998EdymGRxwneUtx/YN/ifgU9dvUnsL/u+d0dQr8
P+Rvg79FXbg7Zv8y21Pyd9jnbTDiuUtOtcz2RoHvdvXM4v/Y8c/w/IsWTtMn
u0dOmGfg/2Nvv1APtXmG+L6Z/uPfNbBnyGm/SS2fzHd6Sm5nIbMUvtPJC77L
/QBWutOs1+H7A8yf5AM0p/OGF9XfNfDJ4Zb+/uS+R3zLv3zPA+7SfDfgitAn
jQj/nPnxfLf/39i5cjL5EbSX0s5UWGrf6UJ9t2K0pTi+WXrfzZCO3lTg5f8F
Vxrf6SU1fE/QWgLf7Vg80ohwafGfEAuT0Hc6UF71p5zp8G/BIS5h78RoS3Ei
3jXCd6bkTVLA8S/ay4ymMpllMMvou70/b2di32lCb52e+jPePz1+BvDagfBJ
4PLg0jya5S71++jsHhp9HpwXwyMO7Ta/nQXQnA8mE/p7gB7LmmXx3XdIXwXR
TnJ8aTQpfEnAZUF/qhVGL88zo2ZtZtbcrBzYCPgivnvHwugkJblUnEWppYRT
fVn9qAZ1ZgNXDF2kIpafi70lBJedvmz0ZiUX349qUXEO+NLAE5+cdJSTMwc6
E6Y4+VzclTAGWxyM+EqYlUQvaYnTMaN6c5MvTq2U73RRknfWrl5EN+mpJ6JP
752HMzcY1Uv7TidhPa/v9pY4Jk4MrozvtJOBOCNYYfJRz0Q+wi71htKTNJEf
Swo+zqym7zRXlm/Q/NJDOXJl/aguktCnfmmplllt3+muFrmSfHs6anV8p5FC
xIXhywpnBfZd3qyu73RVBysCPiv1UEvC1cPqs7ui4FXLDrYCVpFcUXqKkcvh
R/WkuBJ8xcHkICedVOZU3ACMsCWIG/pOIyFWVoWcao14mxL0NsBvSD4r71Ke
vtz0NvadThqxc8VNiEvRK2xV3+mlNHnh8pKrRl59ZcBXoUe16mBVbwqmGr3C
/M7v0wnA5gP/ku/00pRcDd/pK45TcSezzr7TWVPw4i+LL45mxPJf993PIuWk
ly5mL/tOoyF3PuYQfy0wtcF19Z12akXsTrPOZi3RQQvetwWxsHXBN6dWDi2o
rj7ppZtZd/y6xD3NerGHNmZtedPycLUAV5d7xNXKj+qste800oo4zLeiJl28
wj1twLbmjsrkNFMP3+mwHnF9ehvQ3xCORsQN6GnLbsXXm7fXftqz+3bU2xFX
pUfxq77Tl76/CfFr7KQaHLIO5JpQb4rfmJ5e+I2o9wbTgd2qd5jZcN9pqBP7
72jWh5nV0wxfuffM+vpOR69TC/OK/wd3B3hqwtmJfEfiHryV3lO6estshO+0
9ha5kexY+x2FP5LaCPKaRVoINdHPd1roTs9o/G7EbdntALM3wPajty9+K/Jv
YP3JdYevB7nWflRPit/03d89XgEzgLveBPMm8Whwwkg7+nvLWPxXiEfwrV3h
GcjsPcFqt+/y9tqRdDPId7oYF7P/gdTUO5j6IPbTntxr4N9hh315z7Fw9QKj
+nj4BsIT/lyoQ/1VesYzn2Ybwt5DTSge6jut9AHXkZx0MtPsQ9/pchi5ocww
Hs7X6RVHqN1hfM8Q7tKfU7/lz/KfWPy+73Q612yz2Tyzj3yniznsXpgJnP14
i/eI5U/0nSYm0DOKPfUj9wbvph3Ox9f5sdlsekay39n4o5lDc0kjk8wmc5f8
/tQ079ucY/Dn4ys3xXdamQznKHj7M9dE+Cf7UU0NoG80d7xN/AH16by93nQh
O17A7oWZyrctYO9jiceRewd/GruZyg7FtQjewdQHUR8M9yBmGA/PQnDT6VvM
/qWfJfiLwS8ir9ln+E4b74ERdq3ZOt/pTLuYxT4WwaHemfTNgGc6/iTeUe8a
alTYT7hD/J/6UR2JdwO71z3ryX0CLtSc/KVmG9nbHPJL2d0KdrPcbBOYjXBv
BP8Z2KXsU7jNzDyRumwZOdW2+E4/yk0mv9V32tpCbhn3zuXeTdTm0zuZ+hS+
bT1zfQzXNnY6he9YzVtOZ+crzVZxTgW7glj+Dva/3exz3+lgFdhVxF/whp9w
73zu3k7vAubYjv8W+xgBfhv5ReB3cNdq5txptst3+lhEvJjvEGYN9SXkd+Pv
on8afDPASjNrOdfAuQNeafOo2dd8zxL4PozpO2b2LbvXt3/J9/+I/wU7+Abs
Bk7hl4LZY3acfYrrJG+2hfpSONfDswHcphgecUhTm+E6gb+JeBn1vdROwr/P
d5pZBv4E+b3g91AX7iuzU8x2krxyK8Dvg2c/OdXOmJ3l/b8zO83ut8EjvpXg
92MHyG2jZzt9O/BVD3W6ivig2fdgTpM/yK53UtMsD8x+YKad5DTbarCHsMPk
dK7xo9pSfARf51p4dnCHuHfDfxZ/F99yiu85xF2a7ygc4lqHr5z0c479a+e/
+k43P1CTrv4Ao/iG2U3f6eIcewu1pfi82e/McBuuG+CPwa/4N9/p5SZ2HMxP
7Fg8J8Ddwj9OLMwF3+ngBPWTnLfx98CxF+xXflRbii+aXTO77rtfd1/whj/A
cQqeq2Y/s487ZnfZ+yWzy77TxHd88x38U8TfkTvNDoS/YnaPHd5lHs2yn/pB
OA+QuwTu+xieK+z2DFz38b8nPkz9KjVp8SzfcYT6GWpnwR2C9wi4X8we8h4P
mGM/s74T2J/9zMYFDi9sqKUf6NOOA6tHzF4w+9N3OvoarN5e/0DUD9wOfgWv
PvU8FzhdhLH8v7n/AlziPMd9f3D/n+w91KLiR77jk3ZukldOOvqLU7H0I0y8
wOX/5q4LMdh48IgvvlmCwOlFvfHxL9L7mHw8sAkDpwv13GdXiQOnEeVVv0if
3vsJ52N0pHqiwOkkrP/D3i7HxPKFez5w2rlDfBesME99V7+Hvq6xl1/YvzTx
L3YV/H3mTRK4/DOwipMGTie/kP+Pu57G6DAJmGcx9yTgTfRuyQK3y6TwPfSj
nP8xYzL09Ac7f0jueoymMpllRlsFzZLTk9UsG9qSprKQC/BDrSZHrxHqz5F7
FKMnxSngiwdG+RRoJyWn4uxgsqEDxTkCp5EQK0tFTrWcaCs+vdnxc5DXd17j
XdT3GM3lQmc50Yri3MQJ6RU2deD0koi8cP+goTT05kZDj7lDPaqlBat6HjBp
4BNGP2f38mtG2KdoLm/g9JOHXDp0lJ4zHdoSLh+4xPAnwVdN+AyB05Fw+dFL
EvqSUgu5nzJHOvr+i9Go4oxmBQKnI3G9aFY2RkOhpoTPGBN7Mb0FYzRWzqw8
mipHrohZUXZcy6xQTE+yGI5CaE39FdBMIbQWak5xYbOK6KIC+cLoKAe1Styb
klpWeLOByQ4uFZgivF8N3qECmGxwVUZHeseS7KE4uy+GPooRp+Z7FVcJnL7U
n5u4KjpKA4esBLkc3JcTfC56KuPnpL9a4DSSmzgPs5VgvuqB00s1LC+YUsxe
ku/NCzYfZw040jFPBvClsNLkivKdqeiJ491UzwimND2NA6cr6aaMWU12HocV
oDcjdeEKkhe2i1ntwGknM3XxvWTWLHB6rUm9IHtubtYicBpsTq4WPIWIW7Bn
5QoHUW0prkO9JZhWgdNLSzCqSzN1OeuwN+Fag6tIbyX8Vnxjab6zaAyHetqw
57bsvA29rcnXC5ymilILdaFc/cDpqCr5tvDWA9+Aen0wqrejtx557akJ85UA
3wBc+8DpqGHgtBPqTHEjsw6B0097+NuBb0++GvylwNegpyN+deKS1Etxd0Pu
0s+/e/y+rZ5OgdPOBLOJZm8ETg/SRVPetymxsDXBN6Gmb+xj9nrgNFQLTOfA
6SnUl96+v9mbZt14065wNOGOzvR2wu8C38uB04X0JA3qf6jUgvrL5MXdivnr
kO+K35X73iLfhX7x9KNHvS2ZsxV8Ya0lu63L7NrJIHaifXc368FZH2w34np8
84DAaW1g4DQzAGwP9vMKZw/424IdgN+G2d7Eb0d9ELsNOYaw/8Hsv6dZL3CD
mXkwGPkd6RkauD+PNwavnyP6PSUpvD2DqEZ7getJ3JD37MdbdYR/CLttDPcw
9qr9DscfBn4o+dcCp4VQE70Dp58u4NXXjFwfdjuS9+5Dvje9r+H/z+y9wGlU
/W/Bp3nfD5z2++L3oz4icFrpR/0N7hrBfSOIhZlFrL5JgdPORKw/vUP5Vn3j
KOYdyT7706cdTWU/o4OopoSZHDgtdKd3FHXh3sZ/m11NCaLaeZV3aALPJLg+
ADMFrtFw12AfceCmwDOInqnsXfeMwcaSU20a8yvXi/z0wGlhGjnVxsE5EN5p
YAaDGcfsY7hL36a/X+u/benv2EPhncH3Cau/U37Ijmey+/Fm73L2BvsOsXxp
ow+YmfQOA/sutc94N+1zGf5n3D0T/FDiYehgOLNIG7MDp48wVn09ecXS11L4
l8ItfySYOYHTbh/mXWL2SeA0PTuI6nEk2FFwfgrfR+Tm8PZ60/lmy81WsGNh
5qKDyXzncvxJxJPJTWEfws8zW8kOV5Cfxx1ziUdjo7hnBfgpzDGGHulnFVrQ
+Tn+VPC65+PAaWMs9elgVuMrd5j4EL0r4RtH/wLu/Rie93mrCWBUl0YWcipe
FER1pD2vYffjY7ALwYWak7/YbC27n0l+MXvUPjaYbTRbB2Yt3GvBLwGrnllg
hN1t9kXgdKB4PfVv4FzPN30ZOA3sMdsbOG2tByPtvBdENRXiPqM+B8wM3lZv
ui9wWthLfSM7/Zg33Wq2yWwz+59LfRP2ET1fme0PnBbmgd/COY++Gdy5hvuW
Mdty+lfg7yPWr8EhzLoc/D7uWQl+K3PqLmnigNlB/JXEwmzjm1ZR/5zzEP48
OOaDXRBEtaV4O1wruX8pu9gDx2p4Hpr9YfYj33mE3es8ir/DbGfg9CTMYepf
s/uj1BcHUc0p3mV2jPfewN3necs1zHCYnoXccxRO3fsr/dLUevK6U5qTXnbz
Tefg3oN/HvuJuxYzS9izhPgb+MNfA/K/NfuB95C+L7BDcZ1iNyfZ9z7qX3Fe
BLePezfCF+pR53Fwl9jLV8T72ecJ+I/jb8bfBNeJIKrTy+z4EjvfyowHyV8G
ezKm9h1Yndvxhb8SOF0sIL8Q3gPMpvpVMAfhvsI+wv1sh/e02c/sVj3fm50J
nCZ2sufvsR3gj9DzC3YtcFo4w65CPSk+a/bI7C/e+wg9R/EPw3Wd+a5hX4PR
fnfD8w356+x7N3XFv1KXlv7kziDieTeo7YJDPefAnKcmzDHe5DTfeR6On9il
MDfNfmc3twOnhb/NHpv9xu5vkrvAN1/ED3FP2JXwtwKnkau8wyHu+ZZ5TsD5
G1wXmGcHO98O9iY48Z2k7x/2/gS7zL0nmV3fcAXc08Bp4RTfdwX8P+Bv0aPa
HbDq+ZfZL/Jt4te/C9O/Y9S/E7sC7irvqt677F87f4av8z/4fo7BCxvqUec9
cPo/k7hGr+Jr7DN5xO1MuPv03aP3LrmzQVSXih/Adx2es+Skq4ecin+MyfkR
py1pJ5mdL0Tcz2UfHvFlMYuAe8RsKczSmaWPuG9V//UYvgh6TRNxb/+E3T4X
cRpIGXE6khaEvRlEdalYuHhg5T9Gd6kibofKx2MOcf3F3lRPHXHn39wjXHz6
VNNMmke52zGaUJzALC0zp6Gu3O/sPy3fnZBcAmZLDedTtCbcHXSWkHdLwZyK
E1EXPh1vmAjeXBG34+cjbud3qSnOEHEaS8/bP0NricEKIz9JxGlCmlJPxojz
nxHfR0+JqWWKuF0LkxFfHA/QVuaI220mzAejetKI05J89ShORi4penqIvjKj
J2mknFnWmNinrncqZFaYd7rLr7fk5FNQK8Lui7LvIjG1lHA/hxaLgElJLhu6
CLVSlDmygs9OPRsY1YvRm5W89pSbGeODzw6uODrLgaZCbSnOaVYCnRWHvxj4
4uTTwJ8QfDp6SuKnJU5APSF35+CuO/zc0c839ZRCL83Mypq9ZJYXreRBW3mI
hc0APje1ROghMX3SSGmzMvgZiJublWe3+llSwKwgHLm5ozT4UnDli0R1kz/i
dJKPOMzno1aOPZWFOxn5F/ALMNOLEafTjMSZ6MtMrzRS26wOcWZ6CpEvzE7q
s5NsfFcFzmzooBxxVrjqRpzW6kWcZuqCrcB+KnJWgL8o2Lr4Rbi7Dn4x6vXZ
bcjRkP03YP+VzCqDa8DMDcDIL0lPI7MqEact4Z/x+5R+hlSEJ9RoZXCViHPw
Rpl5z5LwN2S3ueBuzI613yb4jcE3Il8VLYSaqIYWytDTFL80cUF2q39LXR1s
NXqr4ucjXx2rQa4MfC+Syx+J6klxXMT9eigLpiZ3xYGJI24KTpjm7L4ZZ1n8
RnxrKWYWl/4NeItIVDs1mK+DWSuz1rxxJXbbCqx6WlKvTL0tb9yGXBviKrxD
bmZrwV2V6W8DZ0vuSMc+0nNfRWribxfzpvLb47ePmbs6sfyOMe8ovxNnHPl2
9Fcl1ykS/TfxNYmr8g1teS/Vupj9HxWjCL4=
"]]}]}, {}, {}, {}, {}}},
VertexColors -> CompressedData["
1:eJxt3AlUDf/7wHFJCSmSVFRKWlDJFm0TKmuEsiWELC2yREr2EoqoJCpCSmhD
iygq2ku79vW26d6ZNqWy/Od7zu95Zs4/zvec1/H+3m5z7zz3MzO3G/l9Dput
R48aNWov/6hR9H//+9NFzKp4OrrnKYWWXmgY7/OHIl7ktepU08LtDoiLLF4R
ShEytaGWgfFMX/VLxJvYQRHL5hPEfRemPyiL3V2/hCLOGt6SlNrDdLGp1blJ
cymiZpLrOI2tTM+LnD3ooU0Rx7q/7xXcx/QLvVHb16yniLy07ZHax5gufsy9
uteOIlb2BkfvusH0nLdHtP9coAihgST1gPtMV+k7OPSB/jtv1+as+VFMXzbL
9rca/bj8LitoerIf1xby5c3X9OOq6abGpzF99gJ9u7Z8ipBVCdjK/cZ0XWPb
8YdIisguMhfidjM9wzj55JYOiii2vberhsfqFctLHH5SxMOGQ6K9g0x/JP+i
Yy/99VIb3nuY9DFdw7ZtVWEzRXgpvLM72cF0mey+wGXfKWJaabqrH8n05Ysi
1nVyKYLP0kP3QxfTyR/8R570U0TK5yDepZ9MB1tneNY20/sdhP4lU1htEb09
IPT4+xK/b9O3A6E3TjDgTh2m0F0y93XdeyhCIjZyv9YP5nbm5xzFvA9RhNO9
dBHhq0yvjqdCt3STxBofL5nTyky3qNcu2xBFEq4X7r6ooP8/9Jbtel/qXpCE
W2ROsCTFdIUHkvN900miXdxFqWY0cz9hx9TDhDpJwv1TyiZ7BaarW1eV1UtQ
RLfp6roLRkz35+g5T1WlCEOZXLXJZkwXcXKdpkTP+bMv/vVuu5kufXCuxZJF
9ON3o1b/3MV0ufAin2EVinjt7njq1xamuwtue2pIvy6WCry6XGjOdH0RO7lx
GylCs+LDa/sTTLefI7PG8RRFKJpPK1W9w/QxSu6xZuEUYSM75takd0xfv+36
m5gC+vVVb7/rZgXTKwNaxQoH6O2csnnFSdYcNp4x2eVF72eTIb2Y8n6mcxPu
DUsMUcT1QTF/o2HW+hC07mAO/fXxEuWbhFidmv3Rp5v++o9uC1aksuZtoXfK
Ao/fFKEqvCBNgDU3XvGVXh307cf7iH9L+sd8to050/+WnmcQ+ge7RU7d9OsG
hP5ucuLHMnq7QOjp77a6iNJzCMoG/BVqTSaJ1855IZv+MPMTvUKmNDycJD4G
rl15lct0Wc8OzpjXJCGpK59Q2Mf0F751pscmUIR5xLqqHbrM97u8NPtC4EmK
KMiwvx/tzfR+O5PStk8U8XPW8ZVX85m+YEl6mXAjRdza/dVJr43pCmFiq7/R
j2Njp0iIGOt5zh59VVLuC0XojF4a2VLIdE5E1uywlxRhSgp2un1gumpxkaTY
cYrwEKme8vwm06fNvs1rsaaIVzIG3QluTM8/Wcf/2Jkijqu2fL3ox9qP91Ja
r9KPJ83I2l0gjOnDe1o/2L6giF8XOvdff8/afpfTru3042n3m/v7HXfk/jVx
5a37Tc8XCP1rj4xCJb1+gtBnS5DHgpooFHrHLOG1MRSFQn+lXzA9lF4nwSkT
N7qcpp/HCD0ia/evkdvzVPvtQRn6/4M2Czi8M38p4prFlW7fvyNvbzvl2odA
ev5A6Essv90/SL/OwOPd9/aX0nOvnPpq4yTW/dxX9Q2wkaUIFzNRl2vrWM/n
1GdPjpyhiP11pnEevqx10lTm+yT68a2pOkee7Bm5PeIlGREVrhQKfXnp6y3O
UhQKfZfZBSfjUhLF5+144h2tehKFXqQ/3TORfl2AuJ9/nXteTK9/IHSD8tlB
iQ4UCl06NmLGMnpOQeiWqhmuGUUUCv23DrWgr4FCoY/9bN+jQ68fIPQQZ3tn
Xfp1DkKXHEwIFOBQKHQ+w5Llc+jnFYQ+bmGcFV85hUJP8x6v+LaMQqEnyDaF
V9JzBkLP6VsbdYZ+HYO43852Vaf+9/f/ubsg9Nptep07PyGhJKx35P71pNIW
dNHrNGhm7RvlSH+flW6iPf2s+VNL02wspufXs0D57XPWnM8ZEns+hu7yWc/f
8f9j/iMSv6QEZlAodPfPDct3zaBQfLympSI5h0kU+jRiVoHddBKFLqj9Q3Ta
KBKFfkfYd2PfDBKFbt3WJbXYikSh657prFd7QKLQ75rlDddnkyj0+SsuSWp2
kSj0KU/1p7jR5w8g9EjytO9YOQrFx7t3fbnhWgrFuapcVS7iSKHQP5T9fiYV
SKH4eAfeBgkUUyj0Ix++xDrQfwehf41PlRmopVDopnNcGzbS8wpCt3qUq1VB
H0/Bo2kdP6z/Ow8s8LiziXWcrSckLWrp9UhqYcNqDmtdWrwr3/zRf/PYrFfX
wlqXvQsmJxvT56PPJlTPL2aty4ZSE3yu0evckVUOItqs+TZIubjwPb1dB3MX
qv5irVd6M0qKbOjX3x/XFSJUx8g5XNIcpCYUQqLQnyy9+oG3jEShnzO9rXS4
hYdCnxotYakznkRxzhc6eRr4kih00as9po30egzi9mqv+bn5EoVCH+8cvf5W
MoVCvzbLpjEhhkKh7x1eZb/4MIVCd2jjM5szj0KhLwp3camltwPE+T8S/mff
SgqF/rNW+5bMdgqFnpRPqG6Po1Do275tDpOlj8sgJ7tu6SC9v02PtvgOsc43
5q1ONFxOz02XnW9hPmv/3lQtdrhPr1ehHiK9kaz16vLa+bfLq+l5PdorLNbM
Ot9w+SOfSa9TzurWGx6xrivWqH2OuUyf/4ztDvoUyDr/cXebbHSLvl3RkuVa
Faz1/avTjUxtevsq9wgJarDWsTfpGhc203OoukQpT4S1nX2nCl7fpLevf+D4
j/Gs+xGYRM0qotf1h5Xb4yfWj5zD6yvGrFx3jUShZ9otuDe7iEShW8tl8C9b
SKHQg1KVV7XRjwM0+TW27bMMfV6wX5DLzzruyzrXJWqeIIkLQ7F7U1OZ+y3d
7SoVM4YkTrdkuyjZMH2xTYdNkBJJfJaXp9a4M12/fI5q+nWSyJ1MzQxiHdct
z56M3LmYImL37VJssmS+b+mPRpcJ9HXv6TuX7joUjHwe7qrZ7VSi9xuI8z8r
SX56LoVC1xisF2hMp9DnZtP5a+jj9swXTYclWPvXzSRySW0JvW6E3vgZU8N0
o0SXA+cTKUJr790ruazj0IQdyqv8PtLnZ5GbH53OY/rBoTehi+nrYvdhb9M7
rOPuiYLsJ4X0upOmfzTuJOs8YLT3LIuH9PnFaOH4qS1VTH+72WvWWHpuVFcc
m2HHWveuv7PUe0zPz1j18/ek+0c+P0Lr1GWm0usciHN6+HtgQyWFQu8+5/Mi
iX4ewfK4wYz/Xm9ic9UfZf3juNyS2HPAnD7fBfv3LL35kb5OvCOlFvqXdZ24
4PLxuJPbSULlcJ+laiSz3w8c8t/vt41HuMkZdUTUM+ujzuaMeZ+DuYS/iMA2
/nVMNx8vI2WmyyWcdKaJT/rNZdb/UMun6+y5xEnT2Mu6iszt/XrmK7/u4BIr
f/QmpnowXevkN92f7jzCJ03sXsYYZntm6uo8EtIkiYv++y6E3GT61oMKt4rp
47lR4oYJK5qYniDw5S8hTRE+Y8YsXLiaebwzFM4UTHOnCIn2ec9eBbPmp13N
LOQi/bq+2l0j9YDpnjdfzLtHnxc//UZurfdn+o9ZYubz6fNsy/jlTr3PWevV
4Fv+ndfo6we1gdGrQ5j+JFEpbxc9h+0ZnbprWXOoumzKkr/0Oirvt2JuXtfI
/ZivLKKvSq9PIHTtDds6PejjL5i5SFnSi16Pls3hvhrXytzOmafr4EDPZeaN
39u9hkfe/3CKutVdep5AvH/lFIGhdgqFfvPcHgHjdxQK/bZcU8hk+roSjN4+
MeAbj0couXx7Vb+N2S8hRwoz4m/yCBP5iY9+so6vSp6ifneLuURi2YnThqdY
8/a3U8jEiEto5H0I0RvDdPu2eZL+V7iE4ruuV5OXMH3lgc4D1yV5RFC8QoJ2
JNP7RFT9z/bwCMsTSZP9LZjv+2hSroHGV3r9NHDIny3MWqc8T3ybupw+vj6x
eGV4iHXcnVk8YNZIErNNqve8kGZdT0r+tf3hTBLvGwKuD2Qy9y8d/jZeZJA+
n+D2736mxtw+t6FRUUOFvn+TDd+3s97n+a02+5TUMfq8X9FtTqMX08XqJcdI
0ddD1ZKr+MVZfe8ll/kkPYdvHgzv8IxgeuWZZyZF2RRxVm3T8fBSpvtRjQZH
Wujz/x0bHiR9HzkPo0PbdmjS11cg9OSr57W5CRQKfVXz2mIB+ngIQves/L7J
ml4XQb4NoacW03N0SN/0zgDruj7W2H/LH3r96ntYtyLg98jt2TNh+sfn9Pkr
CN3fvDy0jn49gdBPXbHKKqPPn0BJk+wMZREe0XBs7CNuKDMP290nZ2tV8Ahn
reVjfY2Z/eVbYLeYdKOPmxWz7qQUMv2wcM/w73H08UjPwl9TZ+R2lnKdpdNX
USh0dVtnAYdLPBR6hUTy7K91nSh026NCK7tUOlHoF5eb5Y9u60Sh8+5b+Ym0
8VD19hXHnOnjcTc3UMmK9T5eq60G35HzFJH4oWeUWQDrfJ6v2sD0NEVc4HPN
r7wz8nEpPPcXF6TXExB62g8Nvmb67+A46enuJ77Sj1/c1UalcuT9jD/n/2aY
Pn8HoTudS+jMekyh0KVP8U2z86RQ6Go6CvqlVygUuovLN3l/ev0Cg52Ms+bS
czYt46HgLNa6yn8yZ8GiTvr8Ie3oj12s4+7PxdOjbtHHdbW5rikTWO8TpXs/
ccygrzeOVG6wXEqOfFxNZlYt6fR6B0LvqNjZ3B9God7v33wf1qSIMI1+UsNi
5P08DtozWsWaRKHL+cpZW2d0ojiP2oYWc/w7UOiZapLLb71qRaE7zPXbpdDb
jEJvuKG8bqdAEwp9s9515WtljSj0nrENO2UtOCj0X8Jkv354BwrdW99xcJUp
hd58MDn3PH1+pT9VRHfBj5HPQ8gb61uC9ByA0AUiBese0+erIPTR37ZrZh2k
UOjVbTGz5T5RKPR506Vz8lIoFLr80a5dPHq/gNC/xgT7LaTPl0Cc28mUQQR9
vQ0u2XtB7zq9jn2Run9P+x/r2O53Hm8n/Xd9/D/XfEyRqC2jzw/vB5xZW8fc
/saiiMxn8RShY+lht+kL63hhs1lD/iFFPLlWPfttLNOXrL6Rv4V+fLtLHn8T
zR/5fQ+Y7Nvzhr6uAqEP8vcZnt7ZiUIfw/1jqb62DYW+bj9v0WKxZhT6b/7U
hLqaOhT6ob2ug6sfVKDQYw9Ir/RrKEbxcatlzGqKL0Chd55/cC/kVSEK3eyc
0yUeWYlCfzYlIHYH2YpCN4w7P+8S/foFcb/sH60pSh8PQejpP29PEzhCotBX
jDV6aDuWi0Jfs0Dl+8wPJCp0IMrz4RN6jju6n6yLG7lf9Lu66jXpdRiEfvlo
t6sXff0CQo+puuybQ59vgdAXhV7WXk/vV9Cn5ZR5Gr1+nXK74xTYPvL7dpyx
WeFHX5eA0J87FFdp0NfT4EqPy3Ua9OsjqLjg/A7WdZpMTU6tpAlFnJdwiG1g
/bx1o6bCql/b6Ovrmxse+TszfUvPmnf36Of1lMXRzPp/nG9oNYqqf3/fjEK/
ekLG/A1/DQp9q9skuWKRUhT6vGS+yT+qslHoSr/eLWxZ/AmFrmP4Yna8aQwK
XUJjTM3ip/dR6Bfv7Pywo/AlCr3nsGG5yfhsFPrcsN40y856NNhmvbrPI/p4
pKC3vfo18zxkzwhqmUUfXx7HrNkUzxv5/OTOUY5bY9uBQk9tKmvXvdiKQvc6
8Ofijs08dFTPkpxjVSSR3zdXSHnqP9Yl71s6WvT1A2jReHlVIn397doW+Cjj
K+v65WcQOcnxv+uXGM+Jt5nOt/rjQ0l67g4J3pd0aRp5/yv4DgUH3KJQ6Obp
ydMl6O0BoXN3h461G0Oh0G0UT0RZfaZQsbLiW7foOTz14nmF/nHW+z/lITu2
0efbY8TaXOpZ59uFV9WHRtO3q7LdPhx4c+R2ao7Prrxs/g2FznlQp3dGNhuF
PovPUXarSjIKvbU2PNFbKAaF7rlLJ11L+QkKfUlLzrzTz31RP6dpB2fiedb/
/0Ovh6evfQv1v4JCD9OkrPJbE1Dokqf1NLo8v6LQTy3ttvMqrkHxcRWs/n1/
Wz0KfWi3Xw6fdAUKPVItYYNSVQUKfSDy+/fx7c0o9JinCR331bkoPi4FzfbA
HhL9dpkqiokjCbGvPeGfBljn4dP7pYrkSSKp6bO44yWmq1Z15w5I0Mfv1bfG
+RqN3L9XZovu8bWkUOhfO2rmWCuSKHSvS6nu0UM8FPp0cSe9eUoUOq190R8H
G4ow3jInYMc11vn2HfXdz9+ThFx1SuzVX6zri72cu60y9PpqYlonu27kdsb3
3q64fjUNhb73gvw1PutoFPrMYb8Hc8+EodB1xs29ka+VgEL/pPOxeK7MJxT6
+eCBns3cdBR6YmaasLDmZxT68PPhkk330lHoWTPN18d9TUeh501tNteM+IxC
1/398AExLhOFLtJrWPiV7wMKvdzd2+pgbywKfa6xU4L/nVQU+pQ53wu6BctR
nP8pZuZV+hwUn5/7SnsUtLioxWV74Tex9HH9sKKeN+vn+OnHJ6iqvuISX5XH
mXlsZebj6fXvV0594hHt2uZL7iwkR+zfQTXN0mr6fBGEXrz+5wnhMh4K/fKD
sybNl3koM582d+UaSLS/tXdmEj1/d9xV2/xY7zu1kPYC2+nX0XfP7mBn1uso
6XZfjvV4irhrYPnE7R/Xs/7pCb5BEyNQ6F1Tpc+0XXyKQn8THP1DaigJxf11
pVSsyq0AhS4YllH7y6IMhV4gmzwu71sFCn3drGmbZf0rUejbOfJletoVKPRo
JwPZV2llKM4bxyzS5WwRCt3q3EGHK28yUOjHvKdlWxa/QocmnN2QiD9H+v9/
6POEibV+ZiW3UOjG196sVZyWg0L/2h244Ut3PQr9R2eBUnxzB7rN+Lz1DFuS
MFoakCDxgdmP3TKDVJ19J6G8LtOrZRuznmqkLRXs0uMSXgW+D3f8YfqJ5L37
1otRhIqmdFz58n9cz9onjbK6TaLQfba3nfYZ5qHQVQ/1HtlNkuie77o39oRT
xBtyv44U6zw1M2ywhcMhCUE59c4rMky/WCZyp2IGff5geKLKeO0/1sPN042i
hu6j0Dc80D6v5JyIQtcLMxfK7ipE8fsETNTy6K5CoW8zvVH10q0RhX5q6diT
Xl+bUOhLTV5NWcvfjEJ/bvclIOpgE4rzZkpKC2k0otC3SipNfy5Wi0KfWTX1
uFJwKQrdzGOjvVHwFxR6uZHU00PkYxT6y+sZlkTUMRR6mtCdib+epaLQj3r5
enbbV6HQj+fM+yqm1IZC37Uta2jXLgo9tix44IsJl1CympYxZgIzHx+mlf9Z
OtRJzDd+GaCWxczhbXJHguFMkqhKER9ccnHkOnlZPilb3JtCoTuluv/p9CZR
6DrXlQ1WzqbQwnBN3uQIipi4JTXZMYn5+qJljav3/iQJR6u2EinW+eF2X5mT
x+jjccMpjspNh5FzuF1lHzchMhbFedjoyJfcmodCL5tR9sf6QBUKve6Znnvt
vCYU91dSd+PjXA4K/YjF4gVG5i0o9D8i7QSvm4NClzo7eX/kWw4KvVpINT7U
n4NCP9z56LN8exMKfXV+aKDLqAYUuujS6GXRpmUo9PG67r/mx31BoZNkiJaq
YhwKvXDMWjf5wk8o9Jv2u6V9yktR3L9GxYU6Cs0o9Djti3weXzvRu03e13Ye
JYnaDWElUSnMfLy9Y/RyYweX6K+yoU6wft4UobTWzkaSJEhZoWTSmbn9zlXy
49b2U0SjwCVtnX98znDvum8q5DgKhb47Knu5BX2dAV46nNV1NJK+Puct29nD
+nm/d+NdzQQFighrc+r7uYHpu4Q9RP7aU8S5pwInFniO/L5BtTeNqPepKHSr
NyUvb/uWoThvike77GUbUei3Q9Z8T7fnoNBTumVvKtznoNAzXi+b3/6uGYVe
ene949CjJhR6yfLadFt63QShdz0YvWj7Mg4KfTDcOyvyDgfFx2Uk59g8uRmF
vq6MvKUyvQ6F7hH9d2L1i2IU+vxJ5nfC6z+h0J9e4jr+qItDoUfluOwrsc5B
oUtsU/00NKkWhc5vay4rE96GQl/xJ0s6IZpEq52UFhS7k4SEb2efI+tzAB+z
jm7taySJv4If61Sns96XUVm1ax9FEe+2PJKI+8fn95xCVAtq9lAo9Al9wvPs
nlCobrPqznH0HB7YSIo/Zs0hf5Gv0Zv9FBE0cWXRj8usnxs6lR54H0UR6oMR
pr9SRn7fHnuL/fpdOSj0kxMX+wS0VKHQD4TFiJtFNqHQ95wsPD5owkGh75Ja
EfY6swmFvqlGs6Suqx6FrkL+nFzHq0Ghf0grWFAvWIfi87pMWd6faEShF318
8POpKAeF7rB7umtMGgeFft3hnOXAvUYUetm14GvbEspR6GZbAofvKX5GoRvc
ezI7OPYlCr3C6oXpHu9kFLq70c3ujm1lKPT+61umNWtzUOjq3cFTyhV5KPTc
Wdp6qX0U+nF0eJVSGkX8LUg86/6Pz3UMWeTbdGdRKHSlV5KbLp6hUOjk4gjv
6fS8gUcFbK57Z1KEl9Z77UrW9c/ElU9irt6i5zVow82lz1ifrxirp5ZeSRHp
j353HW4cuT03TCOcbVO/otBPlJyNX/anFoVO6CTxhz9sRqE/uF31sqinGcV5
8PVyqGxrQKGHOljN6YupQqHvdhc+ba9VgUKfLLfhzyvXChT6JKVJhq7r6lDo
dXyGp3vTmlDoxRIBh69s4aDQU2XS607+bkShX3QPcwgbU4FCb88PK5xW+xmF
Hpb5OKr1ZwgK/ajxeNWsXTEodCt3n+kpM4tQ6McXlEpv4WtGoTsrLRKUfkuh
X8Vdqo8/IwmDF1auqd9HngdWz22ccjWPQqEvajAOmPWaQnEecmNkI4IpFPq9
pfLFEvT8gRv8b5a9bacI/TOhTpas912P+SfLXae3S8lIszUknfXz98UnND9U
UMTygb6b/g0j5/B37I240xKFKPRl7juN1q2pQ6HHb1FZ1PmpGYXu9eRhWgI/
B4Ue2Rk8W4OePxD6fqdDKdssq1DoHTZvdRrav6HQf0613x0ytwKF/uPyd6ln
0nUo9D/HxzyIjWhCoUfcq3Gx0+Sg0J/MuyJ6PrkRhe5o8jPA/vI3FPqeCRLi
tS3pKPTTUmXd5h+CUeitO901DobFoNAPJWr5iGwoQnH7a8t572uaUOi6in0C
cyaSaFdQt/a2t/99rqVv+Axrv49dsMGgfYAiBFQq7l8dHLnf30dZHVXqoFDo
W460O6TdplDoM2d/Nyt9RaHOB7LU//u9Gr8rJZ5prM+PjU/babIxliLKFjXp
Cacy/XyptP7+jxQRsLLpwMa8fxyXT62pG7iei0KPnZNzZmdyNQo95G6i5nzh
ZhR6+Bv1ODtHDgq9Jc6/SeJxEwqdqzPZLV2rHoUuvOy3wG/lGhTn37O78cTd
WhS6XOztKGO5RhT62Ydbj1h2NqPQwyT7bs68wUGhB+asdtso1IhCHxe4pCJd
twyF7r977uLN5z+h0AuFOyy7Tz5BodcZ60WtffEBxef5rlvyKbFyFPeLyVa5
p9kcFPpwZduz0iQu2uabaWWzlyK4ooLTzS+yfl5b9F4ym0MSe0X2R9qz3j/5
Mnmp7pkAiigKH/w1L/IfP/9N0nie60uh0Hf/0Fm+5ASFQteQERc+00ShBucs
n3ykr6MP3psW95d1Ha0ZFj5+ShBFpG56pyMaM/L7CpNRAadz01Dop3W81Ue5
lKPQS0O6FeuvN6LQbd7kU0fOcFDoK/o8w/ZrcVDoV16s2fplfjMK/afrzxfl
mk0o9BftU3vvvG5CoXdbi89PM+Wg0FUmS2xY+ZGDQt+QFF7ysL8JhX7mkuSs
6Uq1KHR9/vzD4pWFKM5h8LhVge3vUOjG1qPG96jFoNAFtY1lVyVlodClvbNS
Zl6qRaEnHjjiPMaqHcX5bKw2Cw6nUJeEhkjKkEfc3WOS8rGQOV+M+bBCcbEf
j+j1P3xlziTmeC3psNQ7eC1FTPHyPcE5OnIe0vu3rCk/SaH4fDqaSV5dSKG4
30PLpeSzKdTwxKw1JYEUUZh6WbsmmnW8V4vPWEVfZ5fd2C1Q8o+f6xWsFfpx
iHqDQk/dUcdZkVaAQp91vG9QnleFQtdJEApPHWpEoW/aJqmTt4SDQnf77X/K
KJGDQt/RqFs+8Q0HhX5k+qmLe/s5KHSn4UL1LztbUOhL3hbk8Xk3o9DlWq3a
5S0aUOg+GYsrCOMyFHq0F9FDzf+M4vNnWaR0xj2W8X/dYiEllBaSjEI3yUwZ
peFRgkL/JZp0bh+nCYX+TfLL6qjyTtT+sajw7xkk0W1SqXvvHOt9vYDXJk6y
XCLbWUV/Xgvz/qGVucP4nct4hImhl87ZTGY+R+uu8zzrTp8X7ndw+BU8ch4e
Jj2VyxhFodADllwufNlOotBProiPKHpHoVMi7mvOuvTf5yPEb11mfU7YhjMj
Sc2Cvs7paPZTdB35fUeZevl9ygxh/F+POhhzeKFjEgo9rdh6wdTmQhT6uOrn
LVPbKlHowiJ+4SmvGlDo67qOnCszbUKhSwi2Kj+Tbkbx+VGP8qyd24xC3/Pg
2toakyYUumXXpixx4XoUut/WSYJT+8pQ6BXh6ZVZMZkobo9rbM8S12gUesiM
PXMkkoNR6J/MOoWIvHQUOqFuxqs/XYVCF4t+fFw9rRWFfvlzdm3mBxLt2Tcx
4hGHS6hsDOW9vsLM1ZUC84cWq7gE/4nJLU0CTP90JbtJ+L/fS+M/Gnfs4Mjr
F8eCU7OV6etpELrhnHcKty6RKPTVhklLH2STKPS+5N/GjokUOlVoqm2/NUW8
WOak8IX1e7htsrd8bm2miKstodX6p/7xvqXbvuYm2WgU5yRvp0DJgTAUulCq
jKXl0UQUeslMWVuN1FwU+hrJp9TE7hIUur17vrGFcQUKXbNJrMz0WRUKXXKr
9A3qYhUKvXjDes+UmG8oztvbtVl9csUo9IaBtY3Kul9Q6HPdlp0U/xyJdkmK
zzbGz4n+/z/08avl45ND3DgUevwEO/Xv8UUodCviiY3i8kYUevtWAYOWFd/R
qr8n9nvw0ftzofdGO9bvwTbyzsWZmXCJt4q5c16MZ+Yt75K+ZNZSHjE+MNdZ
kLXuTThaIq52miIcUla8SP7H53hf/f3s9iWaRHEOzfl4nzRJFLp74dxdKVwS
lfjFtYmspYiX2V3vb7A+v5sha6V4axlF2LVcvKJvxXRx0aHvjfT5wItnVgrT
//HzFHXXWGGrh59RfBzjkqgnE2NR/LqjiQaZviGM/+u9bz32ZVyJRaE/599H
Hp7zHoXuklAXmxjzGYUuKm3rKLIgC8Xn4Vi4VntnJgr9T1DPZ3XrdBT6wvwN
hlqVCSj0/vlRHrHbXqLQy2O9V9qaXUWhN9/mjwuTjUOhp/StOSWmnIdCjyvo
ufflQg0K3WNrRl5eZCsK3bJJJt3al4e2Vk41HLONJBLFXx7hf8XMwcVU7oop
G3nEwUU3FtdUMPO2iMd/dtRjkvicHHR3YdvIdU8863ysoAaF4va0yqlcb+Wh
0MlpZEeAOolC/yxjlqJ5hkKrW1reBZhQhOsm2WFj1ue+XCcF8Db2ksQBgykp
wqpMd/jpFzzLliK8fGvXdlwbOYdXFJ998NlWgeI8OLrkKWrnoNB3zzHYH+ub
hEKXkFrmcfxvGAq9k6usUJd7D4XeGj468e/rJyj0Y2cv9LZlPEOhf/LKm2F/
MgyFrlN6ccwDvacobo+i4fb8v34o9EkGy3eu9niNQjdLmDxWsPkTCv2At29f
+toiFPot4QAt1+81KHTNA1/DK91bUOhqqz19VAS5aLRQyP4een1Q0n6zUYW1
PtRcyLlUos8jJBaWHarJZebjxt1eBT/6OCtUl9ZewzrOFmxxzRz6QxEVor8F
NP7x7y0sbltz7IEjiUJXWB0laiVGovh8Wv8dyukhUTep5et2fqSvQ8QX6a5m
vd/i7Pn7nCd9PT5UlnNAl3U9zhvVmH+jjiQUD0lPcJBkeojd8LvcJxTRuvVX
psM/Pg9s2is68OEgB4WutfquuHVzDQp9Wu0MG7ekEhS6u8N9x+D5WSh0//d/
57h8+ohCf+5y/8u1pAQU+lXdnDrBsDcodP3zjZ7G296i0HMjXiYoTEhCoQtP
3/2oWyENhd7/SFNkX1UBCl3QbLxOSuM3FLpN8okcc+lGFPq+QbcB+01tKPTs
W+1Xy0K56I5w63NRwyQh/i4hJ4W1HpU+WnvtbzmXnjsh+7wzzLx1F/mG3DzE
IyxEVpoc5zJ9Wdo9k80/SULtsHOoiNrI/dgrH71afR2FQi/WzjUM30ii0A8L
zRka70ei0BcYrexLa6DQYq1xDcljKULUV/vNgWXM/f6Y1VBnHkevwzMutjix
Pt+1J7zgsdtiini9+dlb/t0jt3PYJtMpeYBCoce8HBD73tSJQs/vVjG2eNaG
Ql+vpll0or8Jhf51wSkZ61l1KPRd5pc/lTyrQKHreD0y0mosRaGTL4/5O/UV
o9B/OQfVvl5cgkLfrPBrwpLoMhS6Yu3NFfV6VSj0nYFRPfX09RIIffafG3ue
LWpBod8dfW2Hj+Z3FHp09b3OlXYkesAs8lG2KEmYTup+PfYks1/Icf5JKVpc
wvPx5H3Wg8z17I9wk+njo7jE7XffpgptZ+Zto4+X5tKJJFG5XC918Bjr8652
S/mT6fNV+a7Bwzn/+Hc/5jTauHR+IlHog6nbUtszSBS6u+CepNE+FHpbYF7o
+gMUUWWz9cox1u9Z6fkY/OhJpB9f9cEBiyHm6wPyiej3pSThEpo3238S6/Ph
7UZbwqMpgm+mrei7jyO3c0ub1Y4ZJyk0PiGt6EcMSfjMG1090DvyvEL4cIx0
Tx6JQh/qX/jN4F4nCv0zxXeIlOpAoef2W9rmX2pFodeL692XfM5BoZsvOSsr
GNuMQtfMPx/kmdyMQjf50HzEuJeDQjdUM1A6NL8NhS5RlbV7XH8HCj1C9YJu
tSgP5Q1VbvbZQhHb9kU9FznNPJ8Ldrz3MTnFI265aKw4PsDMz1yOc7wgp5NQ
MFX/YhvPzNud4TU/hf24RNW+o756K5nb76vbNPDf+33TW8J97hswz29rlHLK
wkCKkP0oF7AreuR+vG12ZukN+jgIQjeLijMfk0Oi0NePSrN01qfQgzpbbIui
KEIu+xQ1kTUn7oHD8u8aSEJrTfZbNdbv216RsxMRaCaJr6+vTxjD+vdlztq6
qnvQ54ka1/dvf+Q7cjuzg/y/ddHHXxC6y+T0/p3KFPp/mrFAvw==
"]], {
GrayLevel[0.5],
DiskBox[{-0.9224714138946695, 0.43621052811634886`}, 0.1],
DiskBox[{-0.025320318115254814`, 1.2629561614277653`}, 0.1],
DiskBox[{-0.8833598441456498, 0.8876449776507078}, 0.1],
DiskBox[{-0.994602144625309, 1.4189801314363804`}, 0.1]}}, {
DisplayFunction -> Identity, AspectRatio -> 0.8632148903228439,
DisplayFunction :> Identity, Frame -> True, FrameLabel -> {None, None},
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLinesStyle -> Directive[
GrayLevel[0.5, 0.4]],
Method -> {
"DefaultBoundaryStyle" -> Automatic, "DefaultColorFunction" ->
"M10DefaultDensityGradient"}, PlotRange -> {All, All},
PlotRangeClipping -> True, PlotRangePadding -> {Automatic, Automatic},
Ticks -> {Automatic, Automatic}}],FormBox[
FormBox[
TemplateBox[{
FormBox[
StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
StyleBox[
"\"Wave Amplitude\"", {FontFamily -> "Arial"}, Background ->
Automatic, StripOnInput -> False]}, {
GraphicsBox[{{}, {},
RasterBox[CompressedData["
1:eJyFmAs01dkex3WjzCgnc6lGwyQyU6FuHVMG/aQGYWSpGMaUFGVKg5to0u1M
Ga/hklfT5J4ZItdkxHjP0HiMR5SD4+2QN4fjMd1b6cXM5P/be6291l33u9ZZ
Xz7L8d/7v/f+7d/vp+X+mYPHYjk5uUV/fO7+8fnzZyKrG++65hhAn0nFI+ui
u0B40vbYJ97+sDqq76uPLO8RbsZL0Nr6n2A40TOn5dnWQLibvfLnJzZHQ0ei
sqT4x0bCG2t3e4ny40HuF410s2dN9O+9BAnj4mugM6rnV7NLTJ/7emm5wkMh
2PJMTO3CW+hzW1+cXaGYAqe22yi2NrYSHrZ+zXLNq6kQc9hF/PHqdsI7/I1u
bNJNh6JQL+HA4Q7C11Y7GRnlZ4DkdqCXV3on4T4rz4os9mSCfEcof2aqi/Bs
z3iPA+Is0JG7On/2PQnhgo87X27JyQbbd2/WvbzQQ/h3l8dqC2dz4JR9fkJw
VS/htbeexO00ywVrE/fsL5f0ES4TLzlcFZoHro1Stb3fU77ihdpGW1E+nD7m
e36ZXT/hfJ31j5pXFoJgdrZP9Bvlrrb8MudDRRAfKbCISxggPOjM7q/60ooh
da1ipqPRIOGpSQ6Oxyd/gqK8aBX1Hsprfz2iNcUvgTqrVQE9giE6TpmP7ExQ
KUgkQsl3OsOEq6oJCp9X3oEZH13zY7WUJwktd5UrlMFfFLLS3zk1QnjWVtHN
4IwyUL1muHyCN0p4WbXjMqsPy0FXv9QvK5fyFpdeX6XfyuH98j0dvk5jhA9N
ebQ3xFeA9cF7pobPKZ+9NGkSu6MSDkn335gVSgl/fZV/ykFJJfhc6FYsMR8n
/K1bL5a+KfgVLqkcPX1xhHIDCPaWaFdBfNq42DxignBzsZL425oq+LeRn9ES
AxnhB47H7Th6shp+uv9UeLeJcs/n6kJdXg3cO/KFfJT/JOGB0SmLx3+sgd5H
ip/avzlFeKT2Rq8fHGvhYXiM6K+llAsLcxp8ntWCvOZqw3a3aZAz+/Pc7oSF
9cVzOwNlT8uz6sKvgOt85p54l3rC5XJ9Hh+3TQZ+xMo5S959whfOYQYsrGMD
4R08q28K9HPgsehMkZNJI+Gz4yJpgG8+HEvYkJCzsonw1a/OVTE0v1ovyq2S
H4Q9my0F87Vxdh71zYRvubNN9olmOWQOW276JU1M+MI5qYSFdWkh3PXaz8Zv
u1dBhE/OkJ9LK+GykIuD85dr4LGhZ/k9fhvhAu69LLz/dsJV3ZduK6+ph5Yy
0ecCKeWp++q7kqX3wSwk2KmrsoPwhX3cCFk2Rny+sJNwnP9bKlMr/hnYRbhe
pJI0+Z1miGhLmRx16Kbv7dW+FMPsdae6XfoSul7nRDGX9raA55Fl6deX9hAe
xs2zWbf88qN+yh1e7bM2MJf5u+0r6SVc85B/5P6gdsjO2WiakfiA8JEDTn27
ozog+ufpyC929BGezc3HQtP6fFYa5YHma8J0bnfBS0GqV/cb/YSbG73sVi3r
hrzBOSdFAeXLtjzYrNAkgZMWzhaGk5S3cONel5HLd3cZIFyocaN9+GEvdCop
a0fXUM6PqFCbWNQHMadPqJTwBwn/+stcOBrRBxZNFfNjyZTPceOb26YxpcYb
Itw9KCFu//V+yEsMkJgHUV4dEFJarz0AJ5821X0mpVzv7wGjuzMHYJ2rXnGS
4zDhOI6uOyHpdysp/6+XszG/dBBitPoTHm8ZIdzZw9oj84MhsAw2DtYWUn7H
zThap2EI5kYS/OyVRgnH5+XtnXG7EEh5mJPGoOqDYTiVab3v+2HKZQ7Ky6OO
j4A2L8203WGMcHu7+fcUZkagy3d+k3wZ5fnc/73S4qz+N30p4eof9Ec8khsD
q+15ioe+ofyiWXOed/gYzF9TfhKxdJzwQePK3mEVKRS8ODFceIZy/L734Urx
UD/lmVvTtratGwedCo0KlX0ThKsYJLra3RqHLp3A7J0llJ/dEBpSvW0CYkOb
hSc3yAjHv7Ma14v6OpFyWOvVVbBHBvO2oeerFk8SnrrGRX7zfRkU3O73euhD
ueIqG4P0g5Pg/YbJR2/3Uo6/6/gnWtjaTBHevFz/0lXPKehun+GfK6J8+2ua
mbzpKYh930b75vppwq/L89pCA6Zh77/SVMSxlP8/T+K+h84+Bx15EzcudHYe
7Pxe4+aNzr4ndORm3HtFZ9fhf60bOrvO6Mh/4PYFOruP2P2I+w4d+T+4fYqO
HPc1OvIC7hwUMOcMzw06cjxn6MhDuXOJjlybO8faTPzAc4+OHOMEOnKMK+jI
MQ6xcXETF7fQkWOcQ0eOcREdOcZ5Nt5j3EVHjnEaHfm3XFxHR97K3QOtzD2G
9wY6crxn0JGf4+4ldOR4j2Uz9zPee+jINbh7Eh35fu5eRUcezt3D4Uzegfc2
OvIn3D2PjlyfywvQkWMeweZTmHegI0/h8hR05JjXoCPHPEjA5IkTXN6EjvwT
Ls9CR455GTpyzOPQkdtweR868jVcnoiOHPNKdORtXB6KjtyTy1vRkS/h8lx0
5AVcXoyO3NF0IY9GJ/k1IzYfR7H5O4rN91FsfYBi6wkUW3+g2HoFxdY3KLYe
QrH1E4qtt1BsfYZi6zkUW/+h2HoRxdaXKLYeRbH1K4qtd1FsfYxi62kUW3+j
2Hodxdb3KG+mH4D6kOkfoNYz/QaUAtOfQPUw/QxUMdP/QF1h+iVknEx/hYyT
6ceQcbL9G06LmH4PqpPpD6E+ZfpJKHWm/4QaYPtVnH4Hgig5bg==
"], {{-110,
Rational[-15, 2]}, {110,
Rational[15, 2]}}], {Antialiasing -> False,
AbsoluteThickness[0.1],
Directive[
Opacity[0.3],
GrayLevel[0]],
LineBox[
NCache[{{110,
Rational[-15, 2]}, {-110,
Rational[-15, 2]}, {-110,
Rational[15, 2]}, {110,
Rational[15, 2]}, {110,
Rational[-15, 2]}}, {{
110, -7.5}, {-110, -7.5}, {-110, 7.5}, {110, 7.5}, {
110, -7.5}}]]}, {
CapForm[None], {}}, {Antialiasing -> False,
StyleBox[
LineBox[{{-110., -7.5}, {110., -7.5}}],
Directive[
AbsoluteThickness[0.2],
Opacity[0.3],
GrayLevel[0]], StripOnInput -> False],
StyleBox[
StyleBox[{{
StyleBox[
LineBox[{{{-77.46478873239437, -7.5},
Offset[{
0, -4.}, {-77.46478873239437, -7.5}]}, \
{{-38.732394366197184`, -7.5},
Offset[{0, -4.}, {-38.732394366197184`, -7.5}]}, {{
0., -7.5},
Offset[{0, -4.}, {0., -7.5}]}, {{
38.732394366197184`, -7.5},
Offset[{0, -4.}, {38.732394366197184`, -7.5}]}, {{
77.46478873239437, -7.5},
Offset[{0, -4.}, {77.46478873239437, -7.5}]}}],
Directive[
AbsoluteThickness[0.2],
GrayLevel[0.4]], StripOnInput -> False],
StyleBox[
LineBox[{{{-108.45070422535214`, -7.5},
Offset[{
0., -2.5}, {-108.45070422535214`, -7.5}]}, \
{{-100.70422535211269`, -7.5},
Offset[{
0., -2.5}, {-100.70422535211269`, -7.5}]}, \
{{-92.95774647887323, -7.5},
Offset[{
0., -2.5}, {-92.95774647887323, -7.5}]}, \
{{-85.21126760563381, -7.5},
Offset[{
0., -2.5}, {-85.21126760563381, -7.5}]}, \
{{-69.71830985915494, -7.5},
Offset[{
0., -2.5}, {-69.71830985915494, -7.5}]}, \
{{-61.9718309859155, -7.5},
Offset[{
0., -2.5}, {-61.9718309859155, -7.5}]}, \
{{-54.22535211267607, -7.5},
Offset[{
0., -2.5}, {-54.22535211267607, -7.5}]}, \
{{-46.478873239436616`, -7.5},
Offset[{
0., -2.5}, {-46.478873239436616`, -7.5}]}, \
{{-30.98591549295775, -7.5},
Offset[{
0., -2.5}, {-30.98591549295775, -7.5}]}, \
{{-23.239436619718308`, -7.5},
Offset[{
0., -2.5}, {-23.239436619718308`, -7.5}]}, \
{{-15.492957746478876`, -7.5},
Offset[{
0., -2.5}, {-15.492957746478876`, -7.5}]}, \
{{-7.746478873239438, -7.5},
Offset[{0., -2.5}, {-7.746478873239438, -7.5}]}, {{
7.746478873239438, -7.5},
Offset[{0., -2.5}, {7.746478873239438, -7.5}]}, {{
15.492957746478876`, -7.5},
Offset[{0., -2.5}, {15.492957746478876`, -7.5}]}, {{
23.239436619718308`, -7.5},
Offset[{0., -2.5}, {23.239436619718308`, -7.5}]}, {{
30.98591549295775, -7.5},
Offset[{0., -2.5}, {30.98591549295775, -7.5}]}, {{
46.478873239436616`, -7.5},
Offset[{0., -2.5}, {46.478873239436616`, -7.5}]}, {{
54.22535211267607, -7.5},
Offset[{0., -2.5}, {54.22535211267607, -7.5}]}, {{
61.9718309859155, -7.5},
Offset[{0., -2.5}, {61.9718309859155, -7.5}]}, {{
69.71830985915494, -7.5},
Offset[{0., -2.5}, {69.71830985915494, -7.5}]}, {{
85.21126760563381, -7.5},
Offset[{0., -2.5}, {85.21126760563381, -7.5}]}, {{
92.95774647887323, -7.5},
Offset[{0., -2.5}, {92.95774647887323, -7.5}]}, {{
100.70422535211269`, -7.5},
Offset[{0., -2.5}, {100.70422535211269`, -7.5}]}, {{
108.45070422535214`, -7.5},
Offset[{0., -2.5}, {108.45070422535214`, -7.5}]}}],
Directive[
AbsoluteThickness[0.2],
GrayLevel[0.4],
Opacity[0.3]], StripOnInput -> False]},
StyleBox[
StyleBox[{{
StyleBox[{
InsetBox[
FormBox[
TagBox[
InterpretationBox["\"-0.2\"", -0.2, AutoDelete -> True],
NumberForm[#, {
DirectedInfinity[1], 1}]& ], TraditionalForm],
Offset[{0., -7.}, {-77.46478873239437, -7.5}], {0., 1.},
Automatic, {1, 0}],
InsetBox[
FormBox[
TagBox[
InterpretationBox["\"-0.1\"", -0.1, AutoDelete -> True],
NumberForm[#, {
DirectedInfinity[1], 1}]& ], TraditionalForm],
Offset[{0., -7.}, {-38.732394366197184`, -7.5}], {0., 1.},
Automatic, {1, 0}],
InsetBox[
FormBox["0", TraditionalForm],
Offset[{0., -7.}, {0., -7.5}], {0., 1.}, Automatic, {1,
0}],
InsetBox[
FormBox["0.1`", TraditionalForm],
Offset[{0., -7.}, {38.732394366197184`, -7.5}], {0., 1.},
Automatic, {1, 0}],
InsetBox[
FormBox[
TagBox[
InterpretationBox["\"0.2\"", 0.2, AutoDelete -> True],
NumberForm[#, {
DirectedInfinity[1], 1}]& ], TraditionalForm],
Offset[{0., -7.}, {77.46478873239437, -7.5}], {0., 1.},
Automatic, {1, 0}]},
Directive[
AbsoluteThickness[0.2],
GrayLevel[0.4]], {
Directive[
Opacity[1]],
Directive[
Opacity[1]]}, StripOnInput -> False],
StyleBox[{{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \
{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}},