forked from checkpoint-restore/criu
-
Notifications
You must be signed in to change notification settings - Fork 0
/
kcmp-ids.c
152 lines (128 loc) · 3.9 KB
/
kcmp-ids.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
#include <unistd.h>
#include <stdlib.h>
#include "asm/types.h"
#include "rbtree.h"
#include "util.h"
#include "syscall.h"
#include "kcmp-ids.h"
/*
* We track shared files by global rbtree, where each node might
* be a root for subtree. The reason for that is the nature of data
* we obtain from operating system.
*
* Basically OS provides us two ways to distinguish files
*
* - information obtained from fstat call
* - shiny new sys_kcmp system call (which may compare the file descriptor
* pointers inside the kernel and provide us order info)
*
* So, to speedup procedure of searching for shared file descriptors
* we use both techniques. From fstat call we get that named general file
* IDs (genid) which are carried in the main rbtree.
*
* In case if two genid are the same -- we need to use a second way and
* call for sys_kcmp. Thus, if kernel tells us that files have identical
* genid but in real they are different from kernel point of view -- we assign
* a second unique key (subid) to such file descriptor and put it into a subtree.
*
* So the tree will look like
*
* (root)
* genid-1
* / \
* genid-2 genid-3
* / \ / \
*
* Where each genid node might be a sub-rbtree as well
*
* (genid-N)
* / \
* subid-1 subid-2
* / \ / \
*
* Carrying two rbtree at once allow us to minimize the number
* of sys_kcmp syscalls, also to collect and dump file descriptors
* in one pass.
*/
struct kid_entry {
struct rb_node node;
struct rb_root subtree_root;
struct rb_node subtree_node;
u32 subid; /* subid is always unique */
struct kid_elem elem;
} __aligned(sizeof(long));
static struct kid_entry *alloc_kid_entry(struct kid_tree *tree, struct kid_elem *elem)
{
struct kid_entry *e;
e = xmalloc(sizeof(*e));
if (!e)
goto err;
e->subid = tree->subid++;
e->elem = *elem;
/* Make sure no overflow here */
BUG_ON(!e->subid);
rb_init_node(&e->node);
rb_init_node(&e->subtree_node);
e->subtree_root = RB_ROOT;
rb_link_and_balance(&e->subtree_root, &e->subtree_node,
NULL, &e->subtree_root.rb_node);
err:
return e;
}
static u32 kid_generate_sub(struct kid_tree *tree, struct kid_entry *e,
struct kid_elem *elem, int *new_id)
{
struct rb_node *node = e->subtree_root.rb_node;
struct kid_entry *sub = NULL;
struct rb_node **new = &e->subtree_root.rb_node;
struct rb_node *parent = NULL;
BUG_ON(!node);
while (node) {
struct kid_entry *this = rb_entry(node, struct kid_entry, subtree_node);
int ret = sys_kcmp(this->elem.pid, elem->pid, tree->kcmp_type,
this->elem.idx, elem->idx);
parent = *new;
if (ret == 1)
node = node->rb_left, new = &((*new)->rb_left);
else if (ret == 2)
node = node->rb_right, new = &((*new)->rb_right);
else if (ret == 0)
return this->subid;
else {
pr_err("kcmp failed: pid (%d %d) type %u idx (%u %u) ret %d\n",
this->elem.pid, elem->pid, tree->kcmp_type,
this->elem.idx, elem->idx, ret);
return 0;
}
}
sub = alloc_kid_entry(tree, elem);
if (!sub)
return 0;
rb_link_and_balance(&e->subtree_root, &sub->subtree_node, parent, new);
*new_id = 1;
return sub->subid;
}
u32 kid_generate_gen(struct kid_tree *tree,
struct kid_elem *elem, int *new_id)
{
struct rb_node *node = tree->root.rb_node;
struct kid_entry *e = NULL;
struct rb_node **new = &tree->root.rb_node;
struct rb_node *parent = NULL;
while (node) {
struct kid_entry *this = rb_entry(node, struct kid_entry, node);
parent = *new;
if (elem->genid < this->elem.genid)
node = node->rb_left, new = &((*new)->rb_left);
else if (elem->genid > this->elem.genid)
node = node->rb_right, new = &((*new)->rb_right);
else
return kid_generate_sub(tree, this, elem, new_id);
}
e = alloc_kid_entry(tree, elem);
if (!e)
return 0;
rb_link_and_balance(&tree->root, &e->node, parent, new);
*new_id = 1;
return e->subid;
}