-
Notifications
You must be signed in to change notification settings - Fork 7
/
train_tofd.py
204 lines (169 loc) · 8.4 KB
/
train_tofd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
# Reference : https://github.com/ArchipLab-LinfengZhang/Task-Oriented-Feature-Distillation
from TOFD.tofd_utils import *
from TOFD.resnet_cifar_tofd import *
from models_repo.massive_resnets import ResNet34,ResNet18
# from models.MobileNetV2_CIFAR import MobileNetV2
from TOFD.dataloader import get_train_valid_loader_cifars,get_test_loader_cifar
from TOFD.tofd_resnets import resnet34
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
parser = argparse.ArgumentParser(description='Task-Oriented Feature Distillation. ')
parser.add_argument('--model', default="res8", help="choose the student model", type=str)
parser.add_argument('--dataset', default="cifar100", type=str, help="cifar10/cifar100")
parser.add_argument('--saved_path', default=".", type=str, help="Saved path for the teacher")
parser.add_argument('--alpha', default=0.05, type=float)
parser.add_argument('--beta', default=0.03, type=float)
parser.add_argument('--l2', default=7e-3, type=float)
parser.add_argument('--teacher', default="res110", type=str)
parser.add_argument('--t', default=3.0, type=float, help="temperature for logit distillation ")
parser.add_argument('--seed', default=3, type=int, help="Seed value for reproducibility")
args = parser.parse_args()
print(args)
BATCH_SIZE = 128
LR = 0.1
if args.dataset == "cifar10":
data_loader_dict, dataset_sizes = get_train_valid_loader_cifars(batch_size=BATCH_SIZE,
cifar10_100=args.dataset)
train_loader = data_loader_dict["train"]
test_loader = get_test_loader_cifar(batch_size=BATCH_SIZE,
dataset=args.dataset)
NUM_ClASSES=10
elif args.dataset == "cifar100":
data_loader_dict, dataset_sizes = get_train_valid_loader_cifars(batch_size=BATCH_SIZE,
cifar10_100=args.dataset)
train_loader = data_loader_dict["train"]
test_loader = get_test_loader_cifar(batch_size=BATCH_SIZE,
dataset=args.dataset)
NUM_ClASSES = 100
elif args.dataset == "tiny":
#TODO
NUM_ClASSES = 200
# get the student model
if args.model == "res18":
net = ResNet18(seed=args.seed,num_classes=NUM_ClASSES)
if args.model == "res34":
net = ResNet34(seed=args.seed,num_classes=NUM_ClASSES)
if args.model == "res110":
net = resnet110_cifar(seed=args.seed,num_classes=NUM_ClASSES)
if args.model == "res32":
net = resnet32_cifar(seed=args.seed,num_classes=NUM_ClASSES)
if args.model == "res20":
net = resnet20_cifar(seed=args.seed,num_classes=NUM_ClASSES)
if args.model == "res8":
net = resnet8_cifar(seed=args.seed, num_classes=NUM_ClASSES)
if args.model == "mobilenet":
net = MobileNetV2(seed=args.seed, num_classes=NUM_ClASSES)
if args.model == 'wres28_2':
from wres_net_tofd import get_Wide_ResNet_28_2_tofd
net = get_Wide_ResNet_28_2_tofd(seed=args.seed, num_classes=NUM_ClASSES)
# get the teacher model
if args.teacher == 'resnet34':
teacher = resnet34(num_classes=NUM_ClASSES)
elif args.teacher == 'wres28_2':
from wres_net_tofd import get_Wide_ResNet_28_2_tofd
teacher = get_Wide_ResNet_28_2_tofd(seed=args.seed,num_classes=NUM_ClASSES)
elif args.teacher == 'vgg11':
from VGG_TOFD import VGG_Intermediate_Branches_TOFD
teacher = VGG_Intermediate_Branches_TOFD("VGG11",seed=args.seed,num_classes=NUM_ClASSES)
elif args.teacher == 'res110':
teacher = resnet110_cifar(seed=args.seed,num_classes=NUM_ClASSES)
elif args.teacher == 'resnet20':
teacher = resnet20_cifar(seed=args.seed,num_classes=NUM_ClASSES)
teacher.load_state_dict(torch.load(args.saved_path),strict=False)
saved_teacher_state_dict = ()
temp_dict = {}
full_modules_state_dict = {}
saved_state_dict = torch.load(args.saved_path)
testing_state_dict = {}
for (key, value), (key_saved, value_saved) in zip(teacher.state_dict().items(), saved_state_dict.items()):
testing_state_dict[key] = value_saved
full_modules_state_dict["core." + key] = value_saved
teacher.load_state_dict(testing_state_dict, strict=False)
teacher.cuda()
net.to(device)
orthogonal_penalty = args.beta
init = False
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=LR, weight_decay=args.l2, momentum=0.9)
if __name__ == "__main__":
best_acc = 0
print("Start Training")
for epoch in range(200):
#for epoch in range(250):
if epoch in [60, 120, 180]:
for param_group in optimizer.param_groups:
param_group['lr'] /= 5
net.train()
sum_loss = 0.0
correct = 0.0
total = 0.0
for i, data in enumerate(train_loader, 0):
length = len(train_loader)
inputs, labels = data
inputs, labels = inputs.to(device), labels.to(device)
outputs, student_feature = net(inputs)
#student_feature = out1,out2,out3
# get teacher results
with torch.no_grad():
teacher_logits, teacher_feature = teacher(inputs)
# init the feature resizing layer depending on the feature size of students and teachers
# a fully connected layer is used as feature resizing layer here
if not init:
teacher_feature_size = teacher_feature[0].size(1)
student_feature_size = student_feature[0].size(1)
num_auxiliary_classifier = len(teacher_logits)
link = []
for j in range(num_auxiliary_classifier):
link.append(nn.Linear(student_feature_size, teacher_feature_size, bias=False))
net.link = nn.ModuleList(link)
net.cuda()
# we redefine optimizer here so it can optimize the net.link layers.
optimizer = optim.SGD(net.parameters(), lr=LR, weight_decay=5e-4, momentum=0.9)
init = True
# compute loss
loss = torch.FloatTensor([0.]).to(device)
# Distillation Loss + Task Loss
for index in range(len(student_feature)):
student_feature[index] = net.link[index](student_feature[index])
# task-oriented feature distillation loss
loss += torch.dist(student_feature[index], teacher_feature[index], p=2) * args.alpha
# task loss (cross entropy loss for the classification task)
loss += criterion(outputs[index], labels)
# logit distillation loss, CrossEntropy implemented in utils.py.
loss += CrossEntropy(outputs[index], teacher_logits[index], 1 + (args.t / 250) * float(1 + epoch))
# Orthogonal Loss
for index in range(len(student_feature)):
weight = list(net.link[index].parameters())[0]
weight_trans = weight.permute(1, 0)
ones = torch.eye(weight.size(0)).cuda()
ones2 = torch.eye(weight.size(1)).cuda()
loss += torch.dist(torch.mm(weight, weight_trans), ones, p=2) * args.beta
loss += torch.dist(torch.mm(weight_trans, weight), ones2, p=2) * args.beta
sum_loss += loss.item()
optimizer.zero_grad()
loss.backward()
optimizer.step()
total += float(labels.size(0))
_, predicted = torch.max(outputs[0].data, 1)
correct += float(predicted.eq(labels.data).cpu().sum())
if i % 20 == 0:
print('[epoch:%d, iter:%d] Loss: %.03f | Acc: %.2f%% '
% (epoch + 1, (i + 1 + epoch * length), sum_loss / (i + 1),
100 * correct / total))
print("Waiting Test!")
with torch.no_grad():
correct = 0.0
total = 0.0
for data in test_loader:
net.eval()
images, labels = data
images, labels = images.to(device), labels.to(device)
outputs, feature = net(images)
_, predicted = torch.max(outputs[0].data, 1)
correct += float(predicted.eq(labels.data).cpu().sum())
total += float(labels.size(0))
print('Test Set AccuracyAcc: %.4f%% ' % (100 * correct / total))
if correct / total > best_acc:
best_acc = correct / total
print("Best Accuracy Updated: ", best_acc * 100)
torch.save(net.state_dict(), "/home/tofd/" + args.model+"_teacher_"+ args.teacher + ".pth")
print("Training Finished, Best Accuracy is %.4f%%" % (best_acc * 100))