-
Notifications
You must be signed in to change notification settings - Fork 3
/
2019-subintern.Rmd
93 lines (60 loc) Β· 2.32 KB
/
2019-subintern.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
---
output:
word_document: default
html_document: default
---
νμν©λλ€.
2019λ
μλΈμΈν΄ μΌμ μ μλμ²λΌ λκΈλ‘ κΈ°λ‘ν΄ μ£Όμμμ€. 2-3μΌ μ£ΌκΈ°λ‘ μ
λ°μ΄νΈ νλ©΄ μ’μ κ² κ°μ΅λλ€.
---
# CSF Immunoglobulin ν¨ν΄κ³Ό λ€λ°μ± κ²½νμ¦ μ€μ¦λμμ μκ΄κ΄κ³
**νμ±ν**, κΉμμ€, μμΈμ, μ μν, λ°μ λΉ, μ΄μν¬ μ±μ€μ
## μ΄λ‘
CSF Immunoglobulin ν¨ν΄κ³Ό λ€λ°μ± κ²½νμ¦ μ€μ¦λμμ μκ΄κ΄κ³λ λμ§ μλ€. (r=0.2, p=0.47)
## μλ‘
CSF Immunoglobulin ν¨ν΄κ³Ό λ€λ°μ± κ²½νμ¦ μ€μ¦λμμ μκ΄κ΄κ³μ λν΄μ λ§μ μκ²¬μ΄ μμΌλ νκ΅μΈμμ μ μλ €μ§μ§ μμλ€.
## Materials and Methods
~~dμ΄μ©κ³ ~~~
## κ²°κ³Ό
- CSF Immunoglobulin ν¨ν΄κ³Ό λ€λ°μ± κ²½νμ¦ μ€μ¦λλ ν¬μ§ μλ€.
- CSF Immunoglobulin ν¨ν΄μ ν¬κ² ~κ°μ§λ‘ λλ μ μλ€.
- λ€λ°μ± κ²½νμ¦μ μ€μ¦λλ ~~μλ€.
1. CSF Immunoglobulin ν¨ν΄κ³Ό λ€λ°μ± κ²½νμ¦ μ€μ¦λλ ν¬μ§ μλ€.
2. CSF Immunoglobulin ν¨ν΄μ ν¬κ² ~κ°μ§λ‘ λλ μ μλ€.
3. λ€λ°μ± κ²½νμ¦μ μ€μ¦λλ ~~μλ€.
---
3. CSF Immunoglobulin ν¨ν΄κ³Ό λ€λ°μ± κ²½νμ¦ μ€μ¦λλ ν¬μ§ μλ€.
1. λ€λ°μ± κ²½νμ¦μ μ€μ¦λλ ~~μλ€.
2. CSF Immunoglobulin ν¨ν΄μ ν¬κ² ~κ°μ§λ‘ λλ μ μλ€.
## Discussion
| μ΄λ¦ | λ©λ΄ | νλ
|
|---|--:|---|
|νμ±ν|μΉ΄νλΌλΌ|0|
|κΉμμ€|μΉ΄νλΌλΌ|2|
|μμΈμ|μμ΄μ€μλ©λ¦¬μΉ΄λ
Έ|2|
|μ μν|μΉ΄νλΌλΌ|3|
|λ°μ λΉ|μμ΄μ€λΌλΌ|3|
|μ΄μν¬|λ
Ήμ°¨λΌλΌ|2|
|μ±μ€μ|μμ΄μ€λͺ¨μΉ΄|3|
## Figures
```{r, echo = FALSE, message = FALSE, warning=FALSE}
library(ggplot2)
qplot(data = mpg, x = drv, y = hwy, geom = "boxplot", colour = drv)
```
Figure 1. Boxplot of drv and hwy.
![Figure 2. CSF Immunoglobulin](https://jamanetwork.com/data/journals/neur/24176/noc110088f1.jpeg)
![Figure 3. Kitty](kitty.png)
## Tables
```{r}
knitr::kable(head(Theoph, 20), caption = "Table 1. Overview of Theoph dataset")
```
```{r}
library(moonBook)
library(tidyverse)
acs %>%
group_by(Dx, smoking) %>%
summarise(HDLC_mean = median(HDLC, na.rm = TRUE),
LDLC_mean = median(LDLC, na.rm = TRUE),
TC_mean = median(TC, na.rm = TRUE)) %>%
arrange(HDLC_mean) %>%
knitr::kable(caption = "Table 2. Smoking and cardiovascular disease")
```