-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
249 lines (158 loc) · 6.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
#!/usr/bin/env python
# coding: utf-8
# ## Install Dependencies
# In[86]:
from __future__ import absolute_import, division, print_function, unicode_literals
import random
# from IPython import get_ipython
#
# get_ipython().system('pip install -q matplotlib numpy pandas pathlib seaborn')
# get_ipython().system('pip install -q tensorflow ')
# get_ipython().system('pip install -q git+https://github.com/tensorflow/docs')
# !pip install -r -q requirements.txt
# ## Import Libraries
# In[87]:
import itertools
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from sklearn.metrics import cohen_kappa_score
# In[88]:
import tensorflow as tf
import tensorflow_docs as tfdocs
import tensorflow_docs.plots
import tensorflow_docs.modeling
from tensorflow import keras
from tensorflow.keras import layers
assert float(tf.__version__.split(".", 1)[0]) >= 2.0, "Please use Tensorflow version 2!"
print(tf.__version__)
# ### Load the transformed data
# Take the pkl file with extra feature columns into a dataframe
# In[89]:
dataset = pd.read_pickle('output/training_set_rel3.pkl')
dataset
# Inspect Columns
# In[90]:
dataset.dtypes
# In[91]:
dataset.isna().sum() > 0
# >You must extract a minimum of three different types of features.
#
# Please see `data_etl.ipynb` for details.
# ```
# meta_features = ['essay_length', 'avg_sentence_length', 'avg_word_length']
# grammar_features = ['sentiment', 'noun_phrases', 'syntax_errors']
# redability_features = ['readability_index', 'difficult_words']
# ```
# In[92]:
# dataset = dataset.dropna(axis='columns').drop(columns=['essay', 'essay_set'])
dataset = dataset.dropna(axis='columns').drop(columns=['essay'])
# In[93]:
def get_feature_combinations(dataset):
attributes = list(dataset)
attributes.remove('domain1_score')
attribute_combinations = []
for size in range(len(attributes)):
attribute_combinations = attribute_combinations + list(itertools.combinations(attributes, size + 1))
return attribute_combinations
feature_combinations = get_feature_combinations(dataset)
results = []
for feature_combination in feature_combinations:
print("Selected feature_combination for Training: ", feature_combination)
df = dataset.filter(list(feature_combination) + ['domain1_score'])
print(df)
# In[94]:
train_dataset = df.sample(frac=0.7, random_state=0)
test_dataset = df.drop(train_dataset.index)
# In[95]:
train_stats = train_dataset.describe().pop("domain1_score").transpose()
print(train_stats)
# In[96]:
train_labels = train_dataset.pop('domain1_score')
test_labels = test_dataset.pop('domain1_score')
# In[ ]:
def norm(x):
return (x - train_stats['mean']) / train_stats['std']
normed_train_data = norm(train_dataset)
normed_test_data = norm(test_dataset)
print(normed_train_data)
# In[ ]:
def build_model():
model = keras.Sequential([
layers.Dense(64, activation='relu', input_shape=[len(train_dataset.keys())]),
layers.Dense(64, activation='relu'),
layers.Dense(1)
])
optimizer = tf.keras.optimizers.RMSprop(0.001)
model.compile(loss='mse',
optimizer=optimizer,
metrics=['mae', 'mse'])
return model
# In[ ]:
# Function to reset seeds for the sake of consistency
def reset_seeds():
SEED = 100
np.random.seed(SEED)
tf.random.set_seed(SEED)
random.seed(SEED)
reset_seeds()
model = build_model()
# In[ ]:
model.summary()
# In[ ]:
example_batch = normed_train_data[:10]
example_result = model.predict(example_batch)
print(example_result)
# In[ ]:
model = build_model()
EPOCHS = 1000
# The patience parameter is the amount of epochs to check for improvement
early_stop = keras.callbacks.EarlyStopping(monitor='val_loss', patience=200)
early_history = model.fit(normed_train_data, train_labels,
epochs=EPOCHS, validation_split=0.2, verbose=0,
callbacks=[early_stop, tfdocs.modeling.EpochDots()])
# In[ ]:
hist = pd.DataFrame(early_history.history)
hist['epoch'] = early_history.epoch
print(hist.tail())
# In[ ]:
plotter = tfdocs.plots.HistoryPlotter(smoothing_std=2)
# In[ ]:
plotter.plot({'Early Stopping': early_history}, metric="mae")
plt.ylabel('MAE [domain1_score]')
# In[ ]:
plotter.plot({'Early Stopping': early_history}, metric="mse")
plt.ylabel('MSE [domain1_score^2]')
# In[ ]:
loss, mae, mse = model.evaluate(normed_test_data, test_labels, verbose=2)
print("Testing set Mean Abs Error: {:5.2f} domain1_score".format(mae))
# In[ ]:
test_predictions = model.predict(normed_test_data).flatten()
a = plt.axes(aspect='equal')
plt.scatter(test_labels, test_predictions)
plt.xlabel('True Values [domain1_score]')
plt.ylabel('Predictions [domain1_score]')
lims = [0, 60]
plt.xlim(lims)
plt.ylim(lims)
_ = plt.plot(lims, lims)
# >You should evaluate your system’s performance overall and for each subset of test essays using quadratic weighted kappa (https://www.kaggle.com/c/asap-aes/overview/evaluation).
#
# A weighted Kappa cab be used to calculate the similarity between predicted and actual score. A perfect score of close to 1.0 is granted when both the predictions and actuals are the same.
# Whereas, the least possible score is -1 which is given when the predictions are furthest away from actuals.
# In[ ]:
print("\n\n\n")
result = cohen_kappa_score(test_labels.values, test_predictions.astype(int), weights='quadratic')
print("Model QWK({0}): {1}".format(feature_combination, result))
# >You should compare the performance of your model to (at least) a baseline that predicts a random class for each test essay.
# In[ ]:
random_predictions = np.random.uniform(low=0, high=test_labels.values.max(), size=test_predictions.size)
baseline = cohen_kappa_score(test_labels.values, random_predictions.astype(int), weights='quadratic')
print("Baseline QWK({0}): {1}".format(feature_combination, baseline))
# In[ ]:
pct = (result - baseline) / baseline * 100
print("Model performed {0} better than the baseline (random scoring) for {1}.".format(pct, feature_combination))
print("\n\n\n")
results.append((feature_combination, result, mse, mae))
results_df = pd.DataFrame(results, columns=['features', 'QWK', 'MSE', 'MAE'])
print(results_df)