-
Notifications
You must be signed in to change notification settings - Fork 22
/
features_tree.py
101 lines (83 loc) · 3.22 KB
/
features_tree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
from Klang import (Kl,Klang_init,
C,O,V,H,L, CLOSE,HIGH,DATETIME,
MA,CROSS,BARSLAST,HHV,LLV,COUNT,BARSLASTFIND,
MAX,MIN,MACD)
from Klang.common import end as today
import talib
import sys
import linecache
import pandas as pd
import requests,time
def PrintException():
exc_type, exc_obj, tb = sys.exc_info()
f = tb.tb_frame
lineno = tb.tb_lineno
filename = f.f_code.co_filename
linecache.checkcache(filename)
line = linecache.getline(filename, lineno, f.f_globals)
print ('EXCEPTION IN ({}, LINE {} "{}"): {}'.format(filename, lineno, line.strip(), exc_obj))
all_list = []
target_day = 10 #收盘价之后的几天内最高价格,判断是否有涨价空间
hostname = "http://klang.org.cn"
hostname = "http://klang.zhanluejia.net.cn"
def get_features(code,end):
try:
json = requests.get(hostname+"/features",
params={"code":code,"end":end,"limit":200},timeout=1000).json()
except:
time.sleep(2)
json = requests.get(hostname+"/features",
params={"code":code,"end":end,"limit":200},timeout=1000).json()
df = pd.json_normalize(json)
if len(df) < 1:
return []
df = df.drop(columns=['_id','codedate','id'])
datas = df.sort_values(by="date",ascending=True)
return datas
def main_loop(start,endday):
global all_list
#for df in Kl.df_all[:1000]:
for df in Kl.df_all:
Kl.code(df["code"])
if start is None:
Kl.date(end=endday)
else:
Kl.date(start=start,end=endday)
try:
if len(Kl.currentdf['df']) <= target_day:
continue
allDate = DATETIME.data
# 如果target_day = N,表示,最后的N 天数据不能作为训练或者测试数据
# 我们会计算这个 N 天的最大值作为目标值,计算涨幅空间
featureday = allDate[-target_day]
datas = get_features(df['code'],featureday)
print(df['code'],df['name'])
datas = datas[(datas['date'] >= allDate[0]) & (datas['date'] < featureday)]
#print(datas.date,len(datas),C.data[:-target_day])
#print(pd.DataFrame({"max":talib.MAX(C.data,target_day)[target_day:].values,"close":C.data[:-target_day].values}))
# 计算涨幅空间
max_target = talib.MAX(C.data,target_day)
rise_target = (max_target[target_day:].values / C.data[:-target_day].values - 1 ) * 100
datas['oc'] = (O.data[:-target_day].values / C.data[:-target_day].values - 1)*100
datas['target'] = rise_target
for i in datas.values.tolist():
all_list.append(i)
except KeyboardInterrupt:
break
except:
PrintException()
fields = [
'code', 'date', 'dea', 'diff', 'ma10', 'ma120', 'ma20', 'ma30', 'ma5',
'ma60', 'macd', 'name', 'rise', 'risevol','oc',
'target']
Klang_init()
main_loop(start=None,endday='2021-10-01')
df = pd.DataFrame(all_list,columns=fields)
df.to_csv('transverse_train'+today+'.csv',index=False)
"""
all_list = []
pred_data = 1
main_loop(start='2021-07-15',endday=today)
df = pd.DataFrame(all_list,columns=fields)
df.to_csv('transverse_pred'+today+'.csv',index=False)
"""