-
Notifications
You must be signed in to change notification settings - Fork 22
/
fibonacci.py
286 lines (233 loc) · 7.24 KB
/
fibonacci.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
#
# 基于斐波那契理论定义的公式
#
#
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("-X", help="X",default=0.0)
parser.add_argument("-A", help="A",default=0)
parser.add_argument("-B", help="B",default=0)
parser.add_argument("-C", help="C",default=0)
parser.add_argument("-D", help="D",default=0)
args = parser.parse_args()
X= float(args.X)
A= float(args.A)
B= float(args.B)
C= float(args.C)
D= float(args.D)
def approx(i,j):
if i > j:
dt = i - j
if (dt / i < 0.05):
return True
else :
dt = j - i
if (dt / i < 0.05):
return True
return False
datalist=[0.382, 0.50,0.618,0.786, 1.00,1.27,1.618 ,2.0, 2.24, 2.618, 3.14]
#0.382 , 2.24
#0.618 , 1.618
#0.786 , 1.27
# 下跌到0.618 左右回调
def downN(high,low,n):
stopline = high-(high-low) * n
stopline = float("%.3f"%stopline)
print(stopline)
return stopline
def upN(high,low,n):
stopline = low + (high-low) * n
stopline = float("%.3f"%stopline)
print(stopline)
return stopline
def down618(high,low):
return downN(high,low,0.618)
# 上升到0.618后终止
def up618(high,low):
return upN(high,low,0.618)
###########################
# down618(99.5625,10.8125)
# 结果是 44.715
#########################
# 下跌到0.786 左右回调
def down786(high,low):
return downN(high,low,0.786)
# 上升到0.786后终止
def up786(high,low):
return upN(high,low,0.786)
# 隆基股份 76
# down786(122.12,64)
# 2021.3.29
# 下跌到1.27 左右回调
def down1270(high,low):
return downN(high,low,1.27)
# 上升到1.27后终止
def up1270(high,low):
return upN(high,low,1.27)
# 下跌到1.618 左右回调
def down1618(high,low):
return downN(high,low,1.618)
# 上升到1.618后终止
def up1618(high,low):
return upN(high,low,1.618)
def detectDownN(high,low):
for i in datalist:
print(i)
downN(high,low,i)
def detectUpN(high,low):
for i in datalist:
print(i)
upN(high,low,i)
butterflylist = []
def addbutterfly(butter):
for i in butterflylist:
if i == butter:
return
butterflylist.append(butter)
def dumpDown(high,low,opt):
ratio = (high-opt)/(high-low)
ratio = float("%.3f"%ratio)
print (ratio)
return ratio
def dumpUp(high,low,opt):
ratio = (opt-low)/(high-low)
ratio = float("%.3f"%ratio)
print (ratio)
return ratio
def dumpratio(x1,a1,b1,c1,d1):
print(x1,a1,b1,c1,d1)
print("xa->b")
dumpDown(a1,x1,b1)
print("ab->c")
dumpUp(a1,b1,c1)
print("bc->d")
dumpDown(c1,b1,d1)
print("xa->d")
dumpDown(a1,x1,d1)
def Displaybutterfly():
for i in butterflylist:
print("=====================================================")
print("=====================================================")
print("===========A=========================================")
print("==========/==\=========C=============================")
print("=========|=====\====/====|===========================")
print("========|========B========\==========================")
print("=======|====================\========================")
print(i[0],i[1],i[2],i[3],i[4],i[5])
print("======|======================\=======================")
print("======/=======================\======================")
print("=====|=========================\=====================")
print("====X===========================\====================")
print("==================================\==================")
print("=====================================\===============")
print("=========================================D===========")
x1,a1,b1,c1,d1 = i[6]
dumpratio(x1,a1,b1,c1,d1)
#-X=2.3 -A=5.1 -B=2.89 -C=4.6 -D=1.5
def bullish_butterfly(x1,a1,b1,c1,d1):
okb = False
okc = False
okd = False
# stop stock
if x1 == a1 or a1 == b1:
return
if b1 < d1*1.05 or b1 > c1 * 0.9:
return
print(x1,a1,b1,c1,d1)
b2 = downN(a1,x1,0.786) #b
b3 = downN(a1,x1,0.618) #b
if(approx(b1,b2)):
okb = True
print(b1,"~~",b2,"0.786")
if(approx(b1,b3)):
okb = True
print(b1,"~~",b3,"0.618")
c2= upN(a1,b1,0.786) #c
c3= upN(a1,b1,0.618) #c
if(approx(c1,c2)):
okc = True
print(c1,"~~",c2,"0.786")
if(approx(c1,c3)):
okc = True
print(c1,"~~",c3,"0.618")
d2 = downN(c1,b1,1.618) # d
d3 = downN(a1,x1,1.618) # d
d4 = downN(a1,x1,1.27) # d
if(approx(d1,d3)):
okd = True
print(d1,"~~",d3,"1.618")
if(approx(d1,d4)):
okd = True
print(d1,"~~",d4,"1.27")
if (okb and okc and okd):
print("=====================================================")
print("=====================================================")
print("===========A=========================================")
print("==========/==\=========C=============================")
print("=========|=====\====/====|===========================")
print("========|========B========\==========================")
print("=======|====================\========================")
print(XD[6],XD[0],AD[0],BD[0],CD[0],DD[0])
print("======|======================\=======================")
print("======/=======================\======================")
print("=====|=========================\=====================")
print("====X===========================\====================")
print("==================================\==================")
print("=====================================\===============")
print("=========================================D===========")
point5 = [x1,a1,b1,c1,d1]
addbutterfly([XD[6],XD[0],AD[0],BD[0],CD[0],DD[0],point5])
dumpratio(x1,a1,b1,c1,d1)
#bullish_butterfly(X,A,B,C,D)
NULL = 0
STATEX = 1
STATEA = 2
STATEB = 3
STATEC = 4
STATED = 5
XD,AD,BD,CD,DD = "","","","",""
def switchlow(status,i):
global X,A,B,C,D,XD,AD,BD,CD,DD
if status == NULL:
X = i[2]
XD = i[1]
return STATEX,True
if status == STATEA:
B = i[2]
BD = i[1]
return STATEB,True
if status == STATEC:
D = i[2]
DD = i[1]
return STATED,True
if status == STATED:
X = i[2]
XD = i[1]
return STATEX,True
return status,False
def switchhigh(status,i):
global X,A,B,C,D,XD,AD,BD,CD,DD
if status == STATEX:
A = i[2]
AD = i[1]
return STATEA,True
if status == STATEB:
C = i[2]
CD = i[1]
return STATEC,True
return status,False
def _search_pattern(name,code,mnlist):
status = NULL
for i in mnlist:
if i[0] == 0: # low
status,ok = switchlow(status,i)
if ok and (status == STATED):
bullish_butterfly(X,A,B,C,D)
if i[0] == 1: # high
status,ok = switchhigh(status,i)
def search_pattern(name,code,mnlist):
for i in range(len(mnlist)):
if mnlist[i][0] == 0:
_search_pattern(name,code,mnlist[i+1:])
# if mnlist 0 is X, and is Only one
_search_pattern(name,code,mnlist)