-
Notifications
You must be signed in to change notification settings - Fork 22
/
get_day_all_stock_infov2.py
executable file
·220 lines (188 loc) · 5.8 KB
/
get_day_all_stock_infov2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
#
# exec script
# 计算股票昨日涨跌 前50,和100日之前的涨跌对比
import os
import sys
import signal
import threading,time
import queue
import pandas as pd
from datetime import datetime
import baostock as bs
import json
import argparse
import requests
# 判断是否 是显示,还是重新下载数据计算
# 数据每天只需要下载一次
parser = argparse.ArgumentParser()
parser.add_argument("--display", help="显示本地数据",default='0')
parser.add_argument("--ishtml", help="生成html格式",default='0')
parser.add_argument("--save_db", help="存储到远程数据库",default='0')
args = parser.parse_args()
display = args.display
ishtml = args.ishtml
save_db = args.save_db
####################
#1. 获取股票数据
####################
lg = bs.login()
today = datetime.now()
endday = str(today.year) + str(today.month) + str(today.day)
# print 打印color 表
HEADER = '\033[95m'
OKBLUE = '\033[94m'
OKGREEN = '\033[92m'
WARNING = '\033[93m'
FAIL = '\033[91m'
ENDC = '\033[0m'
BOLD = '\033[1m'
UNDERLINE = '\033[4m'
#所有的股票表计算后的数据表
all_up_down_list=[]
# 处理异常,在出现异常的时候存盘
def handler(signum, frame):
print("是不是想让我退出啊")
make_save_data()
sys.exit()
#存盘并且打印
def make_save_data():
df = pd.DataFrame(all_up_down_list, columns = ['当日日收盘','前日收盘','21日收盘','百日收盘','昨日涨跌','21日涨跌','百日涨跌','名称','date','代码','行业'])
df.to_csv("./datas/stock_up_down_{0}.csv".format(endday),float_format='%.2f',index_label="序号")
def create_clickable_code(code):
code = code.replace(".","")
url_template= '''<a href="http://quote.eastmoney.com/{code}.html" target="_blank">{code}</a>'''.format(code=code)
return url_template
"""
name: String,
code: String,
date: String,
industry: String,
close: Number,
close1: Number,
close21: Number,
close100: Number,
rise1: Number,
rise21: Number,
rise100: Number,
"""
def save_db_server():
df= pd.read_csv("./datas/stock_up_down_{0}.csv".format(endday))
df = df.sort_values(by="昨日涨跌",ascending=False)
df = df.iloc[0:50]
df.rename(columns={'当日日收盘':'close',
'前日收盘':'close1',
'21日收盘':'close21',
'百日收盘':'close100',
'昨日涨跌':'rise1',
'21日涨跌':'rise21',
'百日涨跌':'rise100',
'名称':'name',
'代码':'code',
'行业':'industry',
}, inplace = True)
del df['序号']
df = df.set_index('date')
df = df.to_json(orient='table')
jsondatas = json.loads(df)['data']
requests.post("http://127.0.0.1:3000/stock/updaterisek",json=jsondatas)
#仅仅显示
def display_save_data():
df= pd.read_csv("./datas/stock_up_down_{0}.csv".format(endday))
if ishtml == "1":
df['代码'] = df['代码'].apply(create_clickable_code)
df = df.sort_values(by="昨日涨跌",ascending=False)
if ishtml == "1":
print(df.iloc[0:50].to_html(escape=False))
else:
print(df.iloc[0:50])
df = df.sort_values(by="百日涨跌",ascending=False)
if ishtml == "1":
print(df.iloc[0:50].to_html(escape=False))
else:
print(df.iloc[0:50])
def get_day_data(code,name):
kdata = bs.query_history_k_data_plus(code, 'date,open,high,low,close,volume', start_date='2020-05-01',
frequency='d')
df = kdata.get_data()
return df
def upordown(code,date,name,industry,lastday,lastday1,lastday21,lastday100):
lastday = float(lastday)
lastday1 = float(lastday1)
lastday21 = float(lastday21)
lastday100 = float(lastday100)
delta1 = (lastday-lastday1)/lastday1 * 100.0
delta21 = 0
delta100 = 0
if lastday21 > 0:
delta21 = (lastday-lastday21)/lastday21 * 100.0
if lastday100 > 0:
delta100 = (lastday-lastday100)/lastday100 * 100.0
code = code.replace(".","")
print(OKBLUE)
print("%.2f %.2f %.2f %.2f %.2f %.2f %.2f %s %s" %(lastday,lastday1,
lastday21,
lastday100,
delta1,
delta21,
delta100,
name,code)
)
print(ENDC)
all_up_down_list.append([
lastday,lastday1,
lastday21,
lastday100,
delta1,
delta21,
delta100,
name,date,code,industry
])
#获取股票的名字和代码号
def getstockinfo(stock):
#2019-12-09,sz.002094,青岛金王,化工,申万一级行业
# 时间,股票代码,名称,类别
d,code,name,industry,skip2 = stock.split(',')
return code,name,industry
#获取所有的股票并下载数据
def get_data_thread(n):
for stock in stocklist:
code ,name,industry = getstockinfo(stock)
print('正在获取',name,'代码',code)
df = get_day_data(code,name)
if len(df) > 2:
date = df.close[df.index[-1]]
lastday = df.close[df.index[-1]]
lastday1 = df.close[df.index[-2]]
lastday21 = 0
if len(df) > 21:
lastday21 = df.close[df.index[-21]]
lastday100 = 0
if len(df) > 99:
lastday100 = df.close[df.index[-100]]
q.put((code,date,name,industry,lastday,lastday1,lastday21,lastday100))
q.task_done()
#
# 程序开始,监听信号
#
signal.signal(signal.SIGINT, handler)
signal.signal(signal.SIGHUP, handler)
signal.signal(signal.SIGTERM, handler)
q = queue.Queue()
# 判断是否已经下载了股票分类代码
if not os.path.exists('./datas/stock_industry_check.csv'):
print('正在下载股票库列表....')
os.system('python3 bs_get_industry_check.py')
stocklist = open('./datas/stock_industry_check.csv').readlines()
stocklist = stocklist[1:] #删除第一行
# 判断是仅仅显示,还是需要下载数据计算
if display == '1':
display_save_data()
elif save_db == '1':
save_db_server()
else:
threading.Thread(target=get_data_thread,args=(1,)).start()
while True:
code,date,name,industry,lastday,lastday1,lastday21,lastday100 = q.get()
print('正在分析',name,'代码',code)
upordown(code,date,name,industry,lastday,lastday1,lastday21,lastday100)
make_save_data()