-
Notifications
You must be signed in to change notification settings - Fork 22
/
klang_bt.py
158 lines (117 loc) · 4.54 KB
/
klang_bt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
from __future__ import (absolute_import, division, print_function,
unicode_literals)
from Klang import Kl, Klang
import backtrader as bt
import pandas as pd
import math
class LongOnly(bt.Sizer):
params = (('stake', 1),)
def _getsizing(self, comminfo, cash, data, isbuy):
# buy 1/2
cash = math.floor(cash * 95 / 100)
if isbuy:
divide = math.floor(cash/data.close[0])
self.p.stake = divide
return self.p.stake
# Sell situation
position = self.broker.getposition(data)
if not position.size:
return 0 # do not sell if nothing is open
return self.p.stake
def PandasData(columns):
lines = ()
params = (
('datetime', None),
('open', 'open'),
('high', 'high'),
('low', 'low'),
('close', 'close'),
('volume', 'vol'),
('openinterest', None),
)
for c in columns:
lines = lines + (c,)
params = params + ((c, -1), )
return type('PandasDataFeed', (bt.feeds.PandasData, ), {'lines': lines, 'params': params})
# Create a Stratey
class KStrategy(bt.Strategy):
def log(self, txt, dt=None):
''' Logging function for this strategy'''
dt = dt or self.datas[0].datetime.date(0)
print('%s, %s' % (dt.isoformat(), txt))
def __init__(self):
# Keep a reference to the "close" line in the data[0] dataseries
self.dataclose = self.datas[0].close
self.order = None
self.macdhist = bt.ind.MACDHisto(self.data)
print(self.data)
def notify_order(self, order):
if order.status == order.Completed:
pass
if not order.alive():
self.order = None # indicate no order is pending
if order.status in [order.Submitted, order.Accepted]:
# Buy/Sell order submitted/accepted to/by broker - Nothing to do
return
if order.status in [order.Completed, order.Canceled, order.Margin]:
if order.isbuy():
self.log(
'BUY EXECUTED, Price: %.2f, Cost: %.2f, Comm %.2f,value %.2f' %
(order.executed.price,
order.executed.value,
order.executed.comm, self.broker.getvalue()))
self.buyprice = order.executed.price
self.buycomm = order.executed.comm
else: # Sell
self.log('SELL EXECUTED, Price: %.2f, Cost: %.2f, Comm %.2f,value %.2f' %
(order.executed.price,
order.executed.value,
order.executed.comm, self.broker.getvalue()))
self.order = None
def next(self):
# Simply log the closing price of the series from the reference
d = eval("self.datas[0]."+"digit"+"[0]")
print(d)
if not self.position:
if self.macdhist > 0:
self.order = self.buy()
else:
if self.macdhist < 0:
self.order = self.sell()
def init_btr():
cerebro = bt.Cerebro(stdstats=False)
# Add a strategy
cerebro.addstrategy(KStrategy)
Kl.code("sh.600062")
df = Kl.currentdf['df']
df.index = pd.to_datetime(df.datetime)
df['openinterest'] = 0
df = df[['open', 'high', 'low', 'close', 'vol', 'openinterest']]
df.insert(6, "digit", [x+5.0 for x in range(200)])
PandasField = PandasData(["digit"])
data = PandasField(dataname=df)
cerebro.adddata(data)
cerebro.addsizer(LongOnly)
cerebro.broker.setcash(100000.0)
# 回撤 & 收益率 & 年化收益率
cerebro.addanalyzer(bt.analyzers.DrawDown, _name='drawDown')
cerebro.addanalyzer(bt.analyzers.Returns, _name='returns')
cerebro.addanalyzer(bt.analyzers.AnnualReturn, _name='annualReturn')
print('成本: %.2f' % cerebro.broker.getvalue())
# Run over everything
result = cerebro.run()
print('总剩余: %.2f' % cerebro.broker.getvalue())
dfAnnualReturn = pd.DataFrame(
[result[0].analyzers.annualReturn.get_analysis()]).T
dfAnnualReturn.columns = ['年化']
rnorm100 = result[0].analyzers.returns.get_analysis()['rnorm100'], # 收益率
maxDrawDown = result[0].analyzers.drawDown.get_analysis()[
'max']['drawdown'], # 最大回撤
print(f'收益率:{rnorm100}')
print(f'最大回撤:{maxDrawDown}')
print(f'年化收益率:\n{dfAnnualReturn}')
# Plot the result
cerebro.plot(style='bar')
if __name__ == '__main__':
Klang.Klang_init() # 加载所有股票列表
init_btr()