-
Notifications
You must be signed in to change notification settings - Fork 22
/
macd1.py
48 lines (42 loc) · 1.91 KB
/
macd1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import baostock as bs
import pandas as pd
import talib as ta
import matplotlib.pyplot as plt
def computeMACD(code,startdate,enddate):
login_result = bs.login(user_id='anonymous', password='123456')
print(login_result)
###获取股票日K线数据###
rs = bs.query_history_k_data(code,
"date,code,close,tradeStatus",
start_date=startdate, end_date=enddate,
frequency="d", adjustflag="3")
#### 打印结果集 ####
result_list = []
while (rs.error_code == '0') & rs.next():
# 获取一条记录,将记录合并在一起
result_list.append(rs.get_row_data())
df = pd.DataFrame(result_list, columns=rs.fields)
#剔除停盘数据
df2 = df[df['tradeStatus']=='1']
#获取dif,dea,hist,它们的数据类似是tuple,且跟df2的date日期一一对应
#记住了dif,dea,hist前33个为Nan,所以推荐用于计算的数据量一般为你所求日期之间数据量的3倍
#这里计算的hist就是dif-dea,而很多证券商计算的MACD=hist*2=(dif-dea)*2
dif, dea, hist = ta.MACD(df2['close'].astype(float).values, fastperiod=12, slowperiod=26, signalperiod=9)
df3 = pd.DataFrame({'dif':dif[33:],'dea':dea[33:],'hist':hist[33:]},
index=df2['date'][33:],columns=['dif','dea','hist'])
df3.plot(title='MACD')
plt.show()
#寻找MACD金叉和死叉
datenumber = int(df3.shape[0])
for i in range(datenumber-1):
if ((df3.iloc[i,0]<=df3.iloc[i,1]) & (df3.iloc[i+1,0]>=df3.iloc[i+1,1])):
print("MACD金叉的日期:"+df3.index[i+1])
if ((df3.iloc[i,0]>=df3.iloc[i,1]) & (df3.iloc[i+1,0]<=df3.iloc[i+1,1])):
print("MACD死叉的日期:"+df3.index[i+1])
bs.logout()
return(dif,dea,hist)
if __name__ == '__main__':
code = 'sh.600004'
startdate = '2017-03-01'
enddate = '2020-04-13'
(dif,dea,hist) = computeMACD(code,startdate,enddate)